Publications from the lab. 2024Mukherjee A, Spanos C and Marston AL† (2024) Checkpoint-independent association of Mad3BUBR1 with Stu1CLASP directs homolog alignment in meiosis I. bioRxiv 2024.01.04.574163; doi: https://doi.org/10.1101/2024.01.04.574163Koch LB, Spanos C, Kelly V, Ly T and Marston AL† (2024) Rewiring of the phosphoproteome executes two meiotic divisions. BioRxiv 2023.09 22.559006 BioRxivMihalas BP, Pieper GH, Currie CE, Kelly DA, Hartshorne GM, McAinsh AD and Marston AL† (2024) Age-dependent loss of cohesion protection in human oocytes. Current Biology, 34, 117-131. Pubmed2023Abramczyk D, del Carmen Sanchez Olmos M, Ramirez Rojas AA, Schindler D, Robertson D, McColm S, Marston AL and Barlow PN† (2023) A supernumerary synthetic chromosome in Komagataella phaffii as a repository for extraneous genetic material bioRxiv 2023.10.05.561004; Microbial Cell Factories, 22, 259. PubmedMassari LF and Marston AL (2023) Chromosome organization by fine-tuning an ATPase. Genes and Development 37, 259-260. Pubmed2022Currie CE, Ford E, Benham Whyte L, Taylor DM, Mihalas BP, Erent M, Marston AL, Hartshorne GM† and McAinsh AD† (2022) The first mitotic division of human embryos is highly error prone. Nature Communications, 13, 6755. PubmedMcAinsh AD† and Marston AL† (2022) The four causes: the functional architecture of centromeres and kinetochores Annual Review of Genetics 56, 279. PubmedBarton RE, Massari LF, Robertson D and Marston AL. (2022) Eco1-dependent cohesin acetylation anchors chromatin loops and cohesion to define functional meiotic chromosome domains. eLife. e74447. doi: 10.7554/eLife.74447 Pubmed2021Marston AL. (2021) A SUMOylation wave to anchor the genome. J Cell Biol. 220, e202110031. doi: 10.1083/jcb.202110031. PubmedSu XB, Wang M, Schaffner C, Nerusheva OO, Clift D, Spanos C, Kelly DA, Tatham M, Wallek A, Wu Y, Rappsilber J, Jeyaprakash AA, Storchova Z, Hay R, Marston AL†(2021)SUMOylation stabilizes sister kinetochore biorientation to allow timely anaphase. J Cell Biol, 220, e202005130 PubmedVisintin R, Marston AL. (2021) Angelika Amon (1967-2020): Breakthrough scientist, extraordinary mentor, and loyal friend. J Cell Biol. 220, e202012031. PubmedBorek WE, Vincenten N, Duro E, Makrantoni V, Spanos C, Sarangapani KK, de Lima Alves F, Kelly DA, Asbury CL, Rappsilber J and Marston AL† (2020)The proteomic landscape of centromeric chromatin reveals an essential role for the Ctf19CCAN complex in meiotic kinetochore assembly. Current Biology, 31, 283-296. Pubmed2020Ford E, Currie CE, Taylor DM, Erent M, Marston AL, Hartshorne GM† and McAinsh AD† (2020) The first mitotic division of the human embryo is highly error-prone. bioRxiv.Galander S and Marston AL† (2020) Meiosis I Kinase Regulators: Conserved Orchestrators of Reductional Chromosome Segregation. Bioessays. 42:e2000018. PubmedKuhl L-M, Makrantoni V, Recknagel S, Vaze AN, Marston AL and Vader G† (2020) A dCas9/CRISPR-based targeting system identifies a central role for Ctf19 in kinetochore-derived suppression of meiotic recombination. Genetics 216:395-408. Pubmed Paldi F, Alver B, Robertson D, Schalbetter SA, Kerr A, Kelly DA, Baxter J, Neale MJ and Marston AL† (2020) Convergent genes shape budding yeast pericentromeres. Nature 582:119-123 PubmedHsieh YYP, Makrantoni V, Robertson D, Marston AL and Murray AW†. (2020) Evolutionary repair: changes in multiple functional modules allow meiotic cohesin to support mitosis. PLoS Biol 18, e3000635 Pubmed2019Galander S, Barton RE*, Borek W*, Spanos C, Kelly DA, Robertson D, Rappsilber, J and Marston AL (2019) Reductional meiosis I chromosome segregation is established by coordination of key meiotic kinases. Developmental Cell. 49, 1-16 PubmedPlowman R*, Singh N*, Tromer EC, Payan A, Duro E, Spanos C, Rappsilber J, Snel B, Kops GJPL, Corbett K† and Marston AL† (2019) The Molecular Basis of Monopolin Recruitment to the kinetochore. Chromosoma. PubmedMakrantoni V, Robertson D and Marston AL† (2019) Analysis of the chromosomal localization of yeast SMC complexes by chromatin immunoprecipitation. Methods Mol Biol. 2004:119-138. doi: 10.1007/978-1-4939-9520-2_10. In the volume "SMC proteins", part of the Methods in Molecular Biology book series. SpringerlinkGalander S, Barton RE, Kelly DA and Marston AL.† (2019) Spo13 prevents premature cohesin cleavage during meiosis. Wellcome Open Res. 4:29. Pubmed2018Borek W and Marston AL (2018) Diverse model systems reveal common principles of meiosis. Genome Biology 9, 134. PubmedMakrantoni V and Marston AL (2018) Cohesin and chromosome segregation. Current Biology 28(12):R688-R693. PubmedBlyth J, Makrantoni V, Barton RE, Spanos C, Rappsilber J and Marston AL† (2018) Genes important for Schizosaccharomyces pombe meiosis identified through a functional genomics screen. Genetics 208, 589-603. Pubmed2017Marston AL and Wassmann K (2017) Multiple duties for spindle assembly checkpoint kinases in meiosis. Front Cell Dev Biol 5, 109. PubmedHinshaw S*, Makrantoni V*, Harrison S† and Marston AL† (2017) The kinetochore receptor for the cohesin loader. Cell. 171;72-84. * equal contribution, † corresponding author PubmedMakrantoni V, Ciesiolka A, Lawless C, Fernius J, Marston A, Lydall D, Stark MJR. (2017) A Functional Link Between Bir1 and the Saccharomyces cerevisiae Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis. G3 (Bethesda). 7(9):3203-3215. doi: 10.1534/g3.117.300089. PubmedMarston AL (2017) Dalmatian: spotting the difference in cohesin protectors. EMBO J. 36(11):1468-1470. doi: 10.15252/embj.201797090. PubmedShen Y, Wang Y, Chen T, Gao F, Gong J, Abramczyk D, Walker R, Zhao H, Chen S, Liu W, Luo Y, Müller CA, Paul-Dubois-Taine A, Alver B, Stracquadanio G, Mitchell LA, Luo Z, Fan Y, Zhou B, Wen B, Tan F, Wang Y, Zi J, Xie Z, Li B, Yang K, Richardson SM, Jiang H, French CE, Nieduszynski CA, Koszul R, Marston AL, Yuan Y, Wang J, Bader JS, Dai J, Boeke JD, Xu X, Cai Y, Yang H. (2017) Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science. 10;355(6329). pii: eaaf4791. doi: 10.1126/science.aaf4791. PMID:28280153. PubmedFox C, Zou J, Rappsilber J, Marston AL. (2017) Cdc14 phosphatase directs centrosome re-duplication at the meiosis I to meiosis II transition in budding yeast. Wellcome Open Res. Jan 5;2:2. doi: 10.12688/wellcomeopenres.10507.1 Pubmed2015Vincenten N, Kuhl LM, Lam I, Oke A, Kerr AR, Hochwagen A, Fung J, Keeney S, Vader G,† Marston AL† (2015). The kinetochore prevents centromere-proximal crossover recombination during meiosis. eLife doi: 10.7554/eLife.10850. † corresponding author PubmedHinshaw SM, Makrantoni V, Kerr A, Marston AL and Harrison SC (2015) Structural evidence for Scc4-dependent localization of cohesin loading. eLife doi: 10.7554/eLife.06057. PubmedMarston AL (2015). Shugoshins: tension-sensitive pericentromeric adaptor proteins. Molecular and Cellular Biology. 35: 634-648. PubmedDuro E and Marston AL (2015) From Equator to Pole: splitting chromosomes in mitosis and meiosis. Genes and Development 29: 109-122. Pubmed2014Sarangapani K*, Duro E*, Deng Y, de Lima Alves F, Ye Q, Opoku KN, Ceto S, Rappsilber J, Corbett KD, Biggins S, Marston AL† and Asbury C† (2014) Sister kinetochores are mechanically fused during meiosis I in yeast. Science 346: 248-51. * equal contribution; † corresponding author. PubmedNerusheva O.O., Galander S., Fernius J., Kelly D. and Marston A. L. (2014) Tension-dependent removal of pericentromeric shugoshin is an indicator of sister chromosome biorientation. Genes and Development. 28: 1291-309. PubmedVerzijlbergen K.F., Nerusheva O.O., Kelly D., Kerr A., Clift D., de Lima Alves F., Rappsilber J. and Marston A.L. (2014) Shugoshin biases chromosomes for biorientation through condensin recruitment to the pericentromere. eLife 3, e01374. PubmedMarston A.L. (2014) Chromosome segregation in budding yeast: sister chromatid cohesion and related mechanisms. Genetics 196: 31-63. Pubmed2013Fernius J., Nerusheva O.O., Galander S., Alves F.D., Rappsilber J. and Marston, A.L. (2013) Cohesin-Dependent Association of Scc2/4 with the Centromere Initiates Pericentromeric Cohesion Establishment. Current Biology doi:pii: S0960-9822(13)00193-0. Pubmed.2012Verzijlbergen K. and Marston, A.L. (2012) A JARID family demethylase controls differentiation timing through global effects on transcription. Molecular Cell 48: 489-90. Pubmed.2011Bizzari F. and Marston, A.L. (2011) Cdc55 coordinates spindle assembly and chromosome disjunction during meiosis. Journal of Cell Biology 193: 1213-28. Pubmed.Clift D. and Marston, A.L. (2011) The role of shugoshin in meiotic chromosome segregation. Cytogenetics and Genome Research 133: 234-42. Pubmed.2009Fernius J. and Marston, A.L. (2009) Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3. PLoS Genetics 5(9):e1000629. Pubmed.Clift D., Bizzari F. and Marston A.L. (2009) Shugoshin prevents cohesin cleavage by PP2A(Cdc55)-dependent inhibition of separase. Genes and Development 23(6):766-80. Pubmed. Marston A.L. (2009) Meiosis: DDK is not just for replication. Current Biology. 19(2):R74-6. Pubmed.2008Kiburz B.M., Amon A. and Marston, A.L. (2008) Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae. Molecular Biology of the Cell 19(3):1199-209. Pubmed.2005Kiburz B.M., Reynolds D.B., Megee P.C., Marston A.L., Lee B.H., Lee T.I., Levine S.S., Young R.A. and Amon, A. (2005) The core centromere and Sgo1 establish a 50-kb cohesin-protected domain around centromeres during meiosis I. Genes and Development 19(24):3017-30. Pubmed.2004Marston A.L. and Amon A. (2004) Meiosis: cell-cycle controls shuffle and deal. Nature Reviews in Molecular and Cellular Biology 5(12):983-97. Pubmed.Marston A.L., Tham W.H., Shah H. and Amon A. (2004) A genome-wide screen identifies genes required for centromeric cohesion. Science 303(5662):1367-70. Pubmed.2003Marston A.L., Lee B.H. and Amon A. (2003) The Cdc14 phosphatase and the FEAR network control meiotic spindle disassembly and chromosome segregation. Developmental Cell 4(5):711-26. Pubmed.2001Marston, A.L., Chen, T., Yang M.C., Belhumeur P. and Chant J. (2001) A localized GTPase exchange factor, Bud5, determines the orientation of division axes in yeast. Current Biology 11(10):803-7. Pubmed.1999Marston, A.L. and Errington J. (1999) Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organisation and developmental regulation. Molecular Cell 4(5):673-82. Pubmed.Marston A.L. and Errington J. (1999) Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Molecular Microbiology 33(1):84-96. Pubmed.Lewis P.J. and Marston A.L. (1999) GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis. Gene 227(1):101-10. Pubmed.1998Marston, A.L., Thomaides H.B., Edwards D.H., Sharpe M.E. and Errington, J. (1998) Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes and Development 12(21):3419-30. Pubmed. This article was published on 2024-06-17