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A major aim of island biogeography has been to describe general patterns of species richness across islands and to identify
the processes responsible. Data are often collected across many islands; with larger datasets providing increased statistical
power and more accurate parameter estimates. However, there is often structure in observational data, violating an assump-
tion of linear models that each datum is independent. In island biogeography this structure may take the form of an island,
archipelago or taxon being represented by multiple data points. We survey recent papers in this field and find that these
forms of non-independence are a common feature. Most authors addressed this problem by conducting separate analyses
for each archipelago, taxon or combination of the two, but a better tool for dealing with non-independence and structure
in data, the mixed model, already exists. We demonstrate the advantages of a mixed model approach by applying it to a
well-known dataset that spans 134 observations of single island endemic (SIE) richness across 39 islands, four archipelagos
and four taxa. Taking island area and age into account, SIE richness varies substantially more among archipelagos than
it does among islands or taxa. We find that SIE richness rises with island age on the Azores and Galapagos, while on the
Canaries and Hawaii SIE richness initially rises with age but later declines on older islands. Our analyses demonstrate three
advantages to island biogeography of applying a mixed modelling approach: 1) structure in the data is controlled for; 2)
the variance among islands, archipelagos and taxa is estimated; 3) all the data can be included in a single model, making it

possible to test whether trends are general across all archipelagos and taxa or are idiosyncratic.

A central goal of island biogeography is to understand the
processes responsible for generating heterogeneity in biodi-
versity among islands (MacArthur and Wilson 1963, 1967,
Whittaker and Ferndndez-Palacios 2007). The most com-
mon approach to addressing this question is to compile data
on numbers of species per island and then to examine the
degree to which species richness is explained by island attri-
butes (particularly area, isolation, habitat heterogeneity and
island age) using linear regression techniques. An assump-
tion of linear models is that all data points are indepen-
dent. However, in island biogeography, as is the case with
many strands of non-experimental biology, numerous fac-
tors can cause this assumption to be violated (see Table 1
for examples of non-independence in the island biogeogra-
phy literature). The problem of non-independence of data
becomes particularly acute when researchers consider larger
datasets in a quest for statistical power and model generality.
In this paper, we show that linear mixed modelling (LMM)
can address these issues by adding information on the struc-
ture of the data (e.g. pseudoreplication due to multiple data
points coming from the same island, archipelago or taxon).
Moreover, LMMs can offer novel insights by estimating the
variation among islands, archipelagos and taxa.

To illustrate the most common forms of non-independence
pertinent to island biogeography, we will explore a hypothetical

statistical model that aims to address island area as a predic-
tor of the species richness of ten distinct taxa across all of the
islands constituting ten different archipelagos. In this case there
are at least three sources of non-independence, namely island,
archipelago and taxon, which we will consider in turn.

Island effects: on any single island, a multitude of local
factors (including aspects of the environment and island
history) not included in our statistical model may make
the species richness of the ten different taxa more similar,
thereby introducing non-independence (pseudoreplica-
tion). For instance, the island may have experienced a recent
tropical storm that exterminated many species, resulting in a
reduction in the species richness of all ten taxa.

Archipelago effects: equally, within a given archipelago,
the species richness of the constituent islands may tend to be
particularly high or low due to attributes of the archipelago,
such as its geological history, climate, inter-island isolation
and isolation from sources of colonists. The combined effects
of these factors that make species richness more similar across
islands within an archipelago is sometimes referred to as
biogeographical coherence (Santos et al. 2010).

Taxon effects: differences in diversity between taxa are a
ubiquitous feature of biodiversity and are often associated
with intrinsic traits of taxa as well as exogenous environmental
factors. For example, just as on the mainland, we may expect
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Table 1. Summary of the forms of pseudoreplication that exist in recent island biogeography studies, the approaches taken to remedy it and
suggestions for how linear mixed models could improve on this.

Study

Type of study®

Potential pseudoreplication*

Method to deal with
pseudoreplication
employed in paper

Suggested model structure in
LMM¥

Dexter 2010

Murakami and
Hirao 2010
Hannus and von

Numers 2010
Santos et al.
2010

Steinbauer and
Beierkuhnlein
2010

Cardoso et al.
2010

Uchida and
Inoue 2010

Kallimanis et al.
2010

Dengler 2010

Ishtiaq et al.
2010

Keppel et al.
2010

Jonsson et al.
2009

Hortal et al.

2009

Tuya and
Haroun 2009

Stracey and
Pimm 2009

Fattorini 2009

Long et al. 2009

Horvath et al.
2009

Species area relationship
Species area relationship
Species area relationship

Species area relationship

Correlates of species
richness

Correlates of species
richness

Correlates of species
richness

Correlates of species
richness

Species area relationship

Species area relationship

Correlates of species
richness
Species area relationship

Habitat area relationship

Correlates of species
richness

Correlates of species
richness

Correlates of species
richness

Correlates of species
richness

Correlates of species
richness

Island, habitat
Island, taxon
Island, year

Island, archipelago, taxon

Island, taxon

Archipelago

Island, sampling time

Biogeographic region
within archipelago

Floristic region within
archipelago

Island

Archipelago

Island

Island, archipelago, taxon

Island, archipelago, taxon

Island, species type (visitor/
resident)

Island, taxon

Island, species type (native/
exotic)

Fragment, habitat

Separate analysis for
each habitat

Separate analysis for
each taxon

Separate analysis for
each year

Separate analysis for
each combination
of archipelago and
taxon

Separate analysis for
each taxon

Separate analysis for
each archipelago
Mean taken across
sampling times.
No action taken

No action taken

Separate analysis for
each taxon
No action taken

Separate analysis for
each combination
of taxon and year

Separate analysis for
each combination
of archipelago and
taxon

Separate analysis for
each archipelago

Separate analysis for
visitors and
residents

Separate analysis for
each taxon

Separate analysis for
native and exotic
species

Separate analysis for
each habitat

Fixed = habitat
Random = island
Random = island + taxon

Fixed = year
Random = island

Random = island +
archipelago + island +
archipelago:taxon

Random = island + taxon

Fixed = archipelago

Random = island + sampling
time

Random = biogeographic
region within archipelago

Random = floristic region
within archipelago

Fixed = taxon

Random = island

Random = archipelago

Fixed = taxon + year
Random = island

Random = island + archi-
pelago + island +
archipelago:taxon

Fixed = archipelago + taxon
Random = island

Fixed = species type
Random = island

Random = island + taxon

Fixed = species type
Random = island

Fixed = habitat
Random = island

*Studies of species richness include those investigating subsets of species richness, e.g. numbers of single island endemics.

* We searched Thomson IS Web of Knowledge (< http://apps.isiknowledge.com/>) for papers published over the period 2009-2010 with
the keyword ‘island biogeography’. We only include papers in this table that were addressing correlates of species richness across islands or
patches of some sort and where the assumption of independence of datapoints appeared to be violated.
¥We suggest a model structure that would remove the pseudoreplication in a mixed modelling framework. We only include variables as
random effects where there are more than four levels, otherwise we propose treating the variable as a fixed effect (Bolker et al. 2009). In
many cases it would also be appropriate to fit interactions between the fixed effects for archipelago (or taxon) and other fixed effects, such

as area. Alternatively, such interactions could be fitted as random effects and random regression implemented.

a taxon whose representatives are top carnivores to be less
species rich across different islands and archipelagos than a
taxon made up of herbivores. Within island biogeography,
taxon effects on species richness on different islands are likely
to be particularly affected by species richness on the main-
land and by the degree of inter-island dispersal.

If a single standard linear model was applied to data col-
lected for the hypothetical scenario described above, there
would be a high probability of detecting a general trend where
there is none (see Fig. 1 for an example of how a false positive or
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type I error may arise). A partial solution, often employed in the
study of island biogeography (Table 1), is to construct separate
linear models within subsets of data comprising each unique
combination of archipelago and taxon identity. The estimated
parameters are then compared across the different subsets, with
the aim of drawing conclusions about the similarities or differ-
ences across the different data subsets. While this approach does
remove pseudoreplication due to archipelago and taxon, it leads
to very small data sets that offer low power to detect trends,
resulting in 1) the failure to find a trend where there is one, also
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Figure 1. A hypothetical scenario illustrating how archipelago or
taxon effects can mislead. In this figure there is no underlying rela-
tionship (dotted line) between island area and species richness but
data points from the same archipelago (or taxon) tend to be more
similar than those from different archipelagos (or taxa). In this case
the slope estimated using a linear model (grey solid line) incorrectly
identifies a positive relationship across all islands, which is due to
differences between archipelagos.

called false negative or type II error; 2) uncertainty in parameter
estimates; 3) the linear models are easily overfitted, i.e. too many
explanatory variables for the number of data points.

Although analysing each taxon by archipelago combination
separately reduces non-independence within tests, any fur-
ther comparison of models between tests, such as comparing
models for different taxa within an archipelago, re-introduces
non-independence due to pseudoreplication of islands. If we
are testing for a difference in slopes then this pseudoreplication
will increase the frequency of type II errors. Under these condi-
tions, a finding of no significant difference between slopes does
not constitute reliable evidence of a shared slope or general
trend across taxa. Unfortunately, this latter problem appears to
arise quite frequently in island biogeography (Table 1).

Here, we show that linear mixed models (LMMs), a class
of models that have gained in popularity in other fields of
ecology and evolution (Bolker et al. 2009), can overcome all
of these problems and deliver novel insights. Surprisingly, in
a survey of recent papers in the field of island biogeography
and species richness, we found no case where LMM was used
(Table 1 for details). Two rare instances where a mixed mod-
elling approach (generalised linear mixed models in both
cases) has been used in an island biogeography setting are
Blackburn et al. (2004) and Steinbauer et al. (2011).

LMMs, similarly to linear models, describe the degree to
which a response variable is predicted by explanatory vari-
ables, but the explanatory variables are of two types, fixed
effects and random effects (see Glossary for an explanation
of LMM terminology). We include the variables for which
we intend to estimate slope or intercept coefficients as fixed
effects. For instance, if we want to test the hypothesis that
species richness increases with island area, we would include
area as a fixed effect (just as would be the case in a linear
model). Random effects describe the grouping (e.g. taxon)

or the hierarchical structure (data points within islands
within archipelagos) within the data. Rather than estimating
a coefficient for each level of a random effect, we estimate
a single parameter, the variance across levels of the random
effect. Therefore, random effects provide an efficient means
of dealing with non-independence, such as data points from
the same island, archipelago or taxon. The number of levels
each random effect should have in order to obtain reliable
estimates of variance is a matter of debate, with some argu-
ing that more than five are needed (Bolker et al. 2009).

If we return to the hypothetical example from earlier, we
can see how this might be treated in a mixed model frame-
work (Eq. 1). We are seeking to explain the In(species rich-
ness + 1), denoted S, for observation  of a taxon p on island
i in archipelago g as a function of the grand mean () and log
island area (4) and its slope coefficient (f). We also want to
quantify the amount by which the observed S for a particu-
lar island:taxon combination r deviates from the best linear
unbiased estimate obtained from the fixed effects. In equa-
tion 1, P, is the deviation for taxon p, Gg is the deviation for
archipelago g, I, is the deviation from the mean prediction
for island 7 within archipelago g, and € i 19 the deviation of
the observation r from the mean prediction for taxon p, archi-
pelago g and island 7 (known as the residual or error term).

Spr =+ PA,+ P+ G + I, + €,, (1)

In a mixed modelling framework we can estimate the
variance across all levels of 2 G, I and € around a mean of
zero. In this way, the variance estimate across taxa, archi-
pelagos and islands provides us with additional information,
whilst also correcting for pseudoreplication. This is com-
monly called variance components analysis and conveys the
amount of variance distributed among the separate random
effects (Pinheiro and Bates 2000, p. 50, Zuur et al. 2009).

So far we have considered a LMM with the random
effects of island, archipelago, taxon and residual. This model
type is also called a random intercept model because island,
archipelago and taxon are categorical variables with a num-
ber of levels across which we estimate variation around
the grand mean. Consider a more complex case where we
are interested not only in whether archipelagos vary in
their intercept but also in whether the slope of the island
area and species richness relationship varies among archi-
pelagos. We can extend the LMM approach to a random
slope model (sometimes called random regression), where,
we can estimate the variation of the slope across different
archipelagos (or taxa). Conceptually, the random slope (or
random regression) model is similar to an analysis of cova-
riance (ANCOVA), where we estimate different slopes for
each level of a categorical variable by adding the interaction
between the continuous variable and the categorical variable.
The difference being that the object of interest is the variance
in slopes rather than the coefficient of each slope.

We illustrate the application of a mixed modelling
approach to data on the richness of single island endemics
(SIEs) collected for multiple islands, archipelagos and taxa.
These data were originally used to test the general dynamic
model (GDM) of oceanic island biogeography (Whittaker
etal. 2008, 2010). The GDM posits that the number of SIEs
initially rises and later falls through time, coincident with
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changes in island area, altitude and habitat diversity (Stuessy
2007, Whittaker et al. 2007). Whittaker et al. (2008, 2010)
applied separate linear models to unique combinations of
archipelago and taxon and showed that by including area,
time and time? as predictors (their AT'T2 model) they could
explain a large proportion of the variance in SIE richness.
Note that in the ATT? model the rise and fall of SIE rich-
ness is independent of island area. In this study we test
whether the influences of area, time and time2 on SIE rich-
ness predicted by the GDM persist when a mixed modelling
approach is applied and additional variables are considered.
W also highlight the further insights that a mixed modelling

approach provides.

Methods
The island data set

Data (n=134) on the number of single island endem-
ics (SIEs), island age (in millions of years) and area (km?)
were kindly provided by R. J. Whittaker and K. A. Triantis
(Whittaker et al. 2008, 2010). Data from four volcanic
archipelagos, the Azores (Arthropods, Coleoptera and land
snails), Canaries (Arthropods, Coleoptera, land snails and
plants), Galapagos (Arthropods, Coleoptera, and plants) and
Hawaii (Arthropods, Coleoptera, land snails and plants) were
included. See Whittaker et al. (2008) for a full discussion of
the selection of islands and for basic evaluation of data quality
issues and important assumptions regarding age of islands.
The data analysed here on Arthropods and Coleoptera on
the Azores (Borges et al. 2005, Borges and Hortal 2009) and
Coleoptera on the Canaries (Izquierdo et al. 2004) were not
included in the study of Whittaker et al. (2008). Data on iso-
lation from the nearest island and from the mainland (both
in km) were obtained from UNEP island directory (< http://
islands.unep.ch/isldir.htm >) and Silva and Smith (2004).

Statistical analyses

Obur response variable was the number of single island endem-
ics (SIE), a diversity metric that has been used by a number of
recent studies. For the sake of simplicity we apply a In(n+ 1)
transformation to the response variable, meaning that linear
mixed modelling techniques can be applied. However, we
refer the reader to a recent study demonstrating that when
faced with count data of this sort, a negative binomial or qua-
si-Poisson error structure often performs better than In(n + 1)
transformation (O’Hara and Kotze 2010). Our fixed effects
were the area of the island (km2), distance to the mainland
(km), distance to the nearest island (km), the geological age of
the island (in millions of years) and its quadratic term.
Following Zuur et al. (2009), we first selected the most
parsimonious random intercepts structure by finding the
model with the lowest Akaike information criterion corrected
for small sample size (AICc) with all fixed effects added.
AAICc is calculated as the difference between each model’s
AICc and the lowest AICc, with a AAICc <2 interpreted as
substantial support that the model belongs to the set of best
models, a AAICc of 4-7 corresponding to less support and
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AAICc > 10 treated as providing no support that the model
belongs to the best set. Akaike weights give the probability
that a model is the best model, given the data and the set of
candidate models (Burnham and Anderson 2004).

Models were fit with Imer in the lme4 package (ver.
0.999375-37) in R (R Development Core Team 2010). When
comparing models that varied in their random effects but not
fixed effects, the models were fit using restricted maximum
likelihood (REML). To find the most parsimonious random
intercept structure we ran models with archipelago, island,
taxon and taxon:archipelago (meaning the unique combina-
tion of taxon and archipelago) as random effects. Island is
nested within archipelago because each island occurs only in
one archipelago. Taxon is crossed random effect with respect
to both island and archipelago, since each taxon can occur on
more than one island or archipelago (see Glossary for defini-
tion of nested versus crossed random effects). For simplicity we
assume that the taxa are independent of each other. In reality
this assumption is likely to be violated because Coleoptera are a
subclade of Arthropods and plants are more distantly related to
snails, beetles and Arthropods than the latter are to each other.
Methods for dealing with phylogenetic non-independence in a
mixed model setting do exist (Hadfield and Nakagawa 2010),
however, we will not consider this issue further here. Equally,
pseudoreplication arising via island or archipelago effects can
be seen as points along a continuum of spatial autocorrela-
tion. We draw the reader’s attention to the option of dealing
with this continuum directly in a mixed modelling framework
by incorporating spatial variation and covariation in the error
term of the mixed model (note that this is not possible in the
Ime4 package but can be done using the nlme package).

Whittaker et al. (2008) argue that the curve of the rise
and fall of diversity with island age will vary among archipela-
gos. Therefore, we use a random slope model to test whether
allowing the age versus SIE richness slope to vary among
archipelago:taxon combinations improved model performance.

After determining the random effect structure, the most
parsimonious combination of fixed effects must be found
using maximum likelihood (ML) rather than REML. We
conducted AICc based multi-model inference using the
dredge function in the MuMIn package in R (ver. 0.13.17)
to run a complete set of models with all possible combina-
tions of the fixed effects. The code in R for all mixed model
analyses is given in Supplementary material Appendix 1.

Graphical inspection is an important tool in statistics
(Hilborn and Mangel 1997). After graphical inspection of
the final model (Pinheiro and Bates 2000, Zuur et al. 2009),
major differences in dynamics among archipelagos were
apparent, and on this basis we chose to explore the alterna-
tive analysis of adding archipelago as a fixed effect instead of
as random effect (see below). Distance to mainland was not
included as fixed effect in these models due to low variation
within archipelagos.

Results
Random effects

The lowest AICc random effects structure included
archipelago, island, taxon and taxon:archipelago as random



intercepts (Table 2). Fitting either a random slope of area
or age for each taxon:archipelago led to an increase in AICc
(i.e. the model was poorer) (Table 2). In the most parsimoni-
ous (lowest AICc) model, after fitting the fixed effects (age
of the island, squared age of the island and the area of the
island), archipelago explained 59% of the variation in the
random effects, with the remainder being distributed as
follows: island = 7%, taxon:archipelago = 3%, taxon = 23%
and residual = 8%.

Fixed effects

‘The lowest AICc model shows the number of SIEs increas-
ing with both the age and area of the island but with a
negative quadratic slope for age (Table 3, Supplementary
material Appendix 2): species richness increases with
area but rises and then falls over time. This model has
nine estimated parameters, four fixed effects and five ran-
dom effects. Neither distance to the mainland and dis-
tance to the nearest island improved model fit (Table 3).
Inspection of predicted versus observed values showed that
the model explained most of the variation in SIE richness
(Supplementary material Appendix 3).

An alternative approach

As archipelago effects were much more sizeable than any of
the other random effects and due to the substantial variation
in maximum island age among archipelagos, we investigated
whether the slopes of the effects of island age or area dif-
fered among archipelagos. While there was no support for
these hypotheses when we used a random slope approach
(Table 2), we were concerned that this might be due to the
small number of archipelagos across which we were trying to
estimate variance in both intercept and slope. We therefore
adopted an alternative approach and included archipelago
as a fixed effect and tested whether allowing for an inter-
action between archipelago and various covariates (island
age, age? and area) led to an improved model fit. By fitting
archipelago as a fixed effect and allowing for interaction with
a covariate, we estimated both an intercept and a slope for
each archipelago.

Treating archipelago as a fixed effect led to a substantal
improvement in model fit (AAICc=11.1, models estimated

with maximum likelihood). The most parsimonious model
included archipelago, age of the island, squared age of the
island and the area of the island (Fig. 2) as fixed effects. It
also included the interaction of archipelago with squared age
of the island as fixed effect (Table 4, Supplemeatary material
Appendix 3). The variance of the random effects included
were as follows: island: 12%, taxon:archipelago: 7%, taxon:
56%, residual: 25% (Supplementary material Appendix 2).
This model is based on 14 estimated parameters, 10 fixed
effects and four random effects. Graphical inspection showed
that the model explained most of the variation in SIE rich-
ness (Supplementary material Appendix 3). Across all four
archipelagos this model described an increase in SIE richness
with island area (Fig. 2). However, the effect of island age
differed among archipelagos. A positive near linear increase
in SIE richness with island age was observed on the young-
est two archipelagos, the Azores and Galapagos. In compari-
son, the coeflicients estimated for the Canaries and Hawaii
described a rise and fall of SIE richness with island age.

Discussion

By applying a mixed model approach to island SIE richness
data across four volcanic oceanic archipelagos, we found that
the ATT? formulation proposed by Whittaker et al. (2007,
2008, 2010) provides an excellent description of the data.
We also identified previously unappreciated nuances that we
will discuss below. Plotting the predicted T +T? function
for the different archipelagos (Fig. 2) revealed that on the
Canaries and Hawaii SIE richness rose and fell with increas-
ing island age, exactly as predicted by Whittaker and col-
leagues. In both cases islands showed an increase in diversity
for the first 10 my and a decrease for the next 10 my. In
comparison and consistent with Borges and Hortal (2009),
we found that on the Azores and Galapagos SIE richness
only increased with island age (Fig. 2).

The increase in SIE richness with island age on younger
islands has a intuitive explanation; speciation, whether
by anagenesis or cladogenesis, requires time (Price 2008,
Rosindell and Phillimore 2010). Moreover, early in an
island’s history, the more species present, the more species
that are available to undergo renewed bouts of cladogenesis
(Whittaker et al. 2007). A slowing of the rate of SIE accu-
mulation with time (not evident in the Azores) makes sense

Table 2. AlCc for random effects model selection with single island endemics as response variable and distance to mainland, age, age?, area
and distance to nearest island as fixed effects (n = 134). Random intercepts were included for archipelago, island, taxon and taxon:archipelago.
Random slopes for area and age varying across taxon:archipelago combinations were tested. An X indicates that a variable was included in
the model, whereas a blank field means that the variable was not included.

Random intercept Random slope

Taxon: Area within taxon: Age within taxon:

Archipelago Island Taxon archipelago archipelago archipelago AlCc
X X X X 330.80
X X X X X 334.24
X X X X X 335.26
X X X 338.71
X X X 341.09

X X X 342.95
X X 350.91
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Table 3. Coefficients for the fixed effects of the four most parsimonious models that treat archipelago, island, taxon and taxon:archipelago as
random effects. The number of parameters in the model (k), the AlCc difference (AAICc) and AlCc weight is given for each model.

Distance Nearest
Intercept mainland Age Age? Area island k AlCc AAICc AlCc weight
—0.3117 0.2410 —0.0129 0.4466 9 282.6 0.00 0.51
—0.4606 0.2336 —0.0129 0.4639 0.0018 10 284.3 1.7 0.22
—0.7650 0.0003 0.2518 —0.0132 0.4535 10 284.6 2.0 0.19
—0.8565 0.0002 0.2433 —0.0131 0.4693 0.0017 11 286.4 3.8 0.08

in the light of accumulating phylogenetic and fossil evidence
that there are limits to diversity and that speciation rates are
regulated by diversity (Phillimore and Price 2008, Rabosky and
Glor 2010, Ezard et al. 2011). However, an explanation for the
decrease in the SIE richness of the older islands is less straight-
forward. In describing the GDM, Whittaker et al. (2008,
2010) suggested that SIE richness on old islands may fall as
a consequence of a reduction in island area (we can discount
this explanation as area is included in the ATT2 model), topo-
graphic complexity and habitat diversity or by SIEs colonizing
other islands and becoming multiple island endemics rather
than SIEs. An alternative explanation is the taxon cycle model
as described by Ricklefs and colleagues (Ricklefs and Cox 1972,
Ricklefs and Bermingham 2002); perhaps old endemic species
on the oldest islands are most susceptible to immigration of
new colonists and the diseases that they carry.

The mixed modelling approach provided insights into
how archipelagos, taxa and islands vary in SIE richness. For
instance, by far the most substantial variance component was
the archipelago effect, with taxon effect also substantial. This
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suggests that biogeographical coherence has a large influ-
ence on SIE richness. We found evidence for a significant
taxon:archipelago interaction, meaning that the SIE rich-
ness of a particular taxon on a particular archipelago was not
entirely accounted for by the main random effects, although
this interaction captured relatively little variance. Island
effects and the residual term were both small.

Whittaker et al. (2008) fitted 14 different models, one
for each island-taxon combination, to explain the number of
single island endemics using area, the time and the squared
time as explanatory variables. Thus, for each of their models,
they estimated four parameters; three slopes and one inter-
cept, summing to 56 parameters. In our lowest AICc model,
treating archipelago as fixed effect, we used 14 parameters in
total, 10 fixed effects, and four random effects. The advan-
tages of the mixed modelling framework over separate fitting
of terms to each archipelago:taxon combination are parsi-
mony and generality, since we have used fewer parameters
in a single model framework, whilst modelling differences
amonyg islands, archipelagos and taxa.
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Figure 2. Prediction from the lowest AICc mixed effect model including the random effects of taxon:archipelago, island and taxon. The
response variable SIE was In(n+ 1) transformed and explained by area of the island (km2) and age of the island (n=134). The grid is
predicted from the fixed effects estimates from the model with the lowest AICc (Table 4) adjusted by the random effect of taxon:archipelago.
Please note that the lines are an approximation and do not include the differences due to the random effect of island.
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Table 4. The fixed effects included in the three most parsimonious models that treat archipelago as a fixed effect. The number of parameters
in the model (k), the AlCc difference (AAICc) and AlCc weight is given for each model. The random effects for the models were island, taxon
and taxon:archipelago. Archipelago (ARCH) was included as a fixed effect and its interactions with age, age? and area. Distance to mainland
was not included as fixed effect due to low variation within archipelagos. An X indicates that a variable was included in the model, whereas

a blank field means that the variable was not included.

Nearest ARCH: ARCH: ARCH: AlCc
ARCH Age Age? Area island age age? area k AlCc AAICc weight
X X X X X 14 2715 0.0 0.24
X X X X 11 272.2 0.25 0.17
X X X X X X 17 272.9 1.43 0.12

A challenge in the application of mixed models to data
is their added complexity. For example, they require the
user to have thought about which variables to include as
fixed effects and random effects and the nesting structure
of random effects. Secondly, even though mixed models
can deal with unbalanced design (different number of data
points for different groups of the random effect), LMMs
require a data set that is large enough to estimate variances
for each group of the random effects. Here we have chosen
to exemplify the advantages of using linear mixed models
for island biogeography using the Ime4 package in the free
software R. Within R, there are several packages for LMMs
and many other common software packages can fit LMMs
(Bolker et al. 2009). The choice of the package depends on
the data and the research question. LMMs are a flexible
tool and recent developments have extended linear mixed
models to generalized linear mixed models (GLMM) with
the option to include a link function and error structures
to allow for the non-normal distribution of the response
variable such as species richness data (often Poisson dis-
tributed) or binomial data for zero-one-states such as alive
or dead (Bolker et al. 2009). Further reading on LMMs
and GLMMs and statistical detail can be obtained from
Pinheiro and Bates (2000), Zuur et al. (2009) and Hadfield
(2010).

In summary, linear mixed models increase the power
to detect general patterns where data come from grouped
sources, such as is common in island biogeography and have
the potential to offer additional insights that linear models
cannot. Therefore, we suggest that this approach should be
adopted as standard in future island biogeography studies
that have the goal of identifying general trends across archi-
pelagos and taxa.

Glossary

Crossed random effect — two or more random effects that act
independently, such as island and taxa.

Fixed effect — estimates intercepts for factor levels or
slopes for continuous variable. Examples are age or area of
islands.

Mixed effects model — a model with both fixed and ran-
dom effects.

Nested random effects — multiple random effects with
a hierarchical structure where levels of one random effect
may only vary within a level of another random effect.
For instance, island effects are nested within archipelago
effects.

Random effects — grouping units drawn as a random sam-
ple from a population, for example islands, archipelagos or
taxa. Allow estimating the variance explained by the group-
ing unit, such as different islands.

Random intercept model — a model where the deviations
of the intercepts of the levels of the random effect from the
grand mean come from a normal distribution with a mean
of zero and an estimated variance.

Random slope/regression model — extending the random
intercept model by allowing the slope estimated for a fixed
effect to vary among the individual units of a random effect.
For example, the slope of the relationship between age of the
island and species richness varies on different archipelagos.
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