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                             Island, archipelago and taxon effects: mixed models as a means of 
dealing with the imperfect design of nature ’ s experiments          

    Nils     Bunnefeld    and   A     lbert B.     Phillimore           

 N. Bunnefeld (n.bunnefeld06@imperial.ac.uk) and A. B. Phillimore, Dept of Life Sciences, Imperial College London, Silwood Park, Buckhurst 
Road, Ascot, SL5 7PY, UK                             .

 A major aim of island biogeography has been to describe general patterns of species richness across islands and to identify 
the processes responsible. Data are often collected across many islands; with larger datasets providing increased statistical 
power and more accurate parameter estimates. However, there is often structure in observational data, violating an assump-
tion of linear models that each datum is independent. In island biogeography this structure may take the form of an island, 
archipelago or taxon being represented by multiple data points. We survey recent papers in this fi eld and fi nd that these 
forms of non-independence are a common feature. Most authors addressed this problem by conducting separate analyses 
for each archipelago, taxon or combination of the two, but a better tool for dealing with non-independence and structure 
in data, the mixed model, already exists. We demonstrate the advantages of a mixed model approach by applying it to a 
well-known dataset that spans 134 observations of single island endemic (SIE) richness across 39 islands, four archipelagos 
and four taxa. Taking island area and age into account, SIE richness varies substantially more among archipelagos than 
it does among islands or taxa. We fi nd that SIE richness rises with island age on the Azores and Galapagos, while on the 
Canaries and Hawaii SIE richness initially rises with age but later declines on older islands. Our analyses demonstrate three 
advantages to island biogeography of applying a mixed modelling approach: 1) structure in the data is controlled for; 2) 
the variance among islands, archipelagos and taxa is estimated; 3) all the data can be included in a single model, making it 
possible to test whether trends are general across all archipelagos and taxa or are idiosyncratic.   

 A central goal of island biogeography is to understand the 
processes responsible for generating heterogeneity in biodi-
versity among islands (MacArthur and Wilson 1963, 1967, 
Whittaker and Fern á ndez-Palacios 2007). Th e most com-
mon approach to addressing this question is to compile data 
on numbers of species per island and then to examine the 
degree to which species richness is explained by island attri-
butes (particularly area, isolation, habitat heterogeneity and 
island age) using linear regression techniques. An assump-
tion of linear models is that all data points are indepen-
dent. However, in island biogeography, as is the case with 
many strands of non-experimental biology, numerous fac-
tors can cause this assumption to be violated (see Table 1 
for examples of non-independence in the island biogeogra-
phy literature). Th e problem of non-independence of data 
becomes particularly acute when researchers consider larger 
datasets in a quest for statistical power and model generality. 
In this paper, we show that linear mixed modelling (LMM) 
can address these issues by adding information on the struc-
ture of the data (e.g. pseudoreplication due to multiple data 
points coming from the same island, archipelago or taxon). 
Moreover, LMMs can off er novel insights by estimating the 
variation among islands, archipelagos and taxa. 

 To illustrate the most common forms of non-independence 
pertinent to island biogeography, we will explore a hypothetical 

statistical model that aims to address island area as a predic-
tor of the species richness of ten distinct taxa across all of the 
islands constituting ten diff erent archipelagos. In this case there 
are at least three sources of non-independence, namely island, 
archipelago and taxon, which we will consider in turn. 

 Island eff ects: on any single island, a multitude of local 
factors (including aspects of the environment and island 
history) not included in our statistical model may make 
the species richness of the ten diff erent taxa more similar, 
thereby introducing non-independence (pseudoreplica-
tion). For instance, the island may have experienced a recent 
tropical storm that exterminated many species, resulting in a 
reduction in the species richness of all ten taxa. 

 Archipelago eff ects: equally, within a given archipelago, 
the species richness of the constituent islands may tend to be 
particularly high or low due to attributes of the archipelago, 
such as its geological history, climate, inter-island isolation 
and isolation from sources of colonists. Th e combined eff ects 
of these factors that make species richness more similar across 
islands within an archipelago is sometimes referred to as 
biogeographical coherence (Santos et al. 2010). 

 Taxon eff ects: diff erences in diversity between taxa are a 
ubiquitous feature of biodiversity and are often associated 
with intrinsic traits of taxa as well as exogenous environmental 
factors. For example, just as on the mainland, we may expect 
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  Table 1. Summary of the forms of pseudoreplication that exist in recent island biogeography studies, the approaches taken to remedy it and 
suggestions for how linear mixed models could improve on this.  

Study Type of study  †  Potential pseudoreplication  ‡  

Method to deal with 
pseudoreplication 
employed in paper

Suggested model structure in 
LMM  ¥  

Dexter 2010 Species area relationship Island, habitat Separate analysis for 
each habitat

Fixed  �  habitat
  Random  �  island

Murakami and 
Hirao 2010

Species area relationship Island, taxon Separate analysis for 
each taxon

Random  �  island  �  taxon

Hannus and von 
Numers 2010

Species area relationship Island, year Separate analysis for 
each year

Fixed  �  year
  Random  �  island

Santos et al. 
2010

Species area relationship Island, archipelago, taxon Separate analysis for 
each combination 
of archipelago and 
taxon

Random  �  island  �  
archipelago  �  island  �  
archipelago:taxon

Steinbauer and 
Beierkuhnlein 
2010

Correlates of species 
richness

Island, taxon Separate analysis for 
each taxon

Random  �  island  �  taxon

Cardoso et al. 
2010

Correlates of species 
richness

Archipelago Separate analysis for 
each archipelago

Fixed  �  archipelago

Uchida and 
Inoue 2010

Correlates of species 
richness

Island, sampling time Mean taken across 
sampling times.

Random  �  island  �  sampling 
time

Kallimanis et al. 
2010

Correlates of species 
richness

Biogeographic region 
within archipelago

No action taken Random  �  biogeographic 
region within archipelago

Dengler 2010 Species area relationship Floristic region within 
archipelago

No action taken Random  �  fl oristic region 
within archipelago

Ishtiaq et al. 
2010

Species area relationship Island Separate analysis for 
each taxon

Fixed  �  taxon
  Random  �  island

Keppel et al. 
2010

Correlates of species 
richness

Archipelago No action taken Random  �  archipelago

Jonsson et al. 
2009

Species area relationship Island Separate analysis for 
each combination 
of taxon and year

Fixed  �  taxon  �  year
  Random  �  island

Hortal et al. 
2009

Habitat area relationship Island, archipelago, taxon Separate analysis for 
each combination 
of archipelago and 
taxon

Random  �  island  �  archi-
pelago  �  island  �  
archipelago:taxon

Tuya and 
Haroun 2009

Correlates of species 
richness

Island, archipelago, taxon Separate analysis for 
each archipelago

Fixed  �  archipelago  �  taxon
  Random  �  island

Stracey and 
Pimm 2009

Correlates of species 
richness

Island, species type (visitor/
resident)

Separate analysis for 
visitors and 
residents

Fixed  �  species type
  Random  �  island

Fattorini 2009 Correlates of species 
richness

Island, taxon Separate analysis for 
each taxon

Random  �  island  �  taxon

Long et al. 2009 Correlates of species 
richness

Island, species type (native/
exotic)

Separate analysis for 
native and exotic 
species

Fixed  �  species type
  Random  �  island

Horvath et al. 
2009

Correlates of species 
richness

Fragment, habitat Separate analysis for 
each habitat

Fixed  �  habitat
  Random  �  island

     †  Studies of species richness include those investigating subsets of species richness, e.g. numbers of single island endemics.   
   ‡   We searched Thomson ISI Web of Knowledge ( �  http://apps.isiknowledge.com/  � ) for papers published over the period 2009–2010 with 
the keyword  ‘ island biogeography ’ . We only include papers in this table that were addressing correlates of species richness across islands or 
patches of some sort and where the assumption of independence of datapoints appeared to be violated.   
   ¥  We suggest a model structure that would remove the pseudoreplication in a mixed modelling framework. We only include variables as 
random effects where there are more than four levels, otherwise we propose treating the variable as a fi xed effect (Bolker et al. 2009). In 
many cases it would also be appropriate to fi t interactions between the fi xed effects for archipelago (or taxon) and other fi xed effects, such 
as area. Alternatively, such interactions could be fi tted as random effects and random regression implemented.   

a taxon whose representatives are top carnivores to be less 
species rich across diff erent islands and archipelagos than a 
taxon made up of herbivores. Within island biogeography, 
taxon eff ects on species richness on diff erent islands are likely 
to be particularly aff ected by species richness on the main-
land and by the degree of inter-island dispersal. 

 If a single standard linear model was applied to data col-
lected for the hypothetical scenario described above, there 
would be a high probability of detecting a general trend where 
there is none (see Fig. 1 for an example of how a false positive or 

type I error may arise). A partial solution, often employed in the 
study of island biogeography (Table 1), is to construct separate 
linear models within subsets of data comprising each unique 
combination of archipelago and taxon identity. Th e estimated 
parameters are then compared across the diff erent subsets, with 
the aim of drawing conclusions about the similarities or diff er-
ences across the diff erent data subsets. While this approach does 
remove pseudoreplication due to archipelago and taxon, it leads 
to very small data sets that off er low power to detect trends, 
resulting in 1) the failure to fi nd a trend where there is one, also 
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called false negative or type II error; 2) uncertainty in parameter 
estimates; 3) the linear models are easily overfi tted, i.e. too many 
explanatory variables for the number of data points. 

 Although analysing each taxon by archipelago combination 
separately reduces non-independence within tests, any fur-
ther comparison of models between tests, such as comparing 
models for diff erent taxa within an archipelago, re-introduces 
non-independence due to pseudoreplication of islands. If we 
are testing for a diff erence in slopes then this pseudoreplication 
will increase the frequency of type II errors. Under these condi-
tions, a fi nding of no signifi cant diff erence between slopes does 
not constitute reliable evidence of a shared slope or general 
trend across taxa. Unfortunately, this latter problem appears to 
arise quite frequently in island biogeography (Table 1). 

 Here, we show that linear mixed models (LMMs), a class 
of models that have gained in popularity in other fi elds of 
ecology and evolution (Bolker et al. 2009), can overcome all 
of these problems and deliver novel insights. Surprisingly, in 
a survey of recent papers in the fi eld of island biogeography 
and species richness, we found no case where LMM was used 
(Table 1 for details). Two rare instances where a mixed mod-
elling approach (generalised linear mixed models in both 
cases) has been used in an island biogeography setting are 
Blackburn et al. (2004) and Steinbauer et al. (2011). 

 LMMs, similarly to linear models, describe the degree to 
which a response variable is predicted by explanatory vari-
ables, but the explanatory variables are of two types, fi xed 
eff ects and random eff ects (see Glossary for an explanation 
of LMM terminology). We include the variables for which 
we intend to estimate slope or intercept coeffi  cients as fi xed 
eff ects. For instance, if we want to test the hypothesis that 
species richness increases with island area, we would include 
area as a fi xed eff ect (just as would be the case in a linear 
model). Random eff ects describe the grouping (e.g. taxon) 

or the hierarchical structure (data points within islands 
within archipelagos) within the data. Rather than estimating 
a coeffi  cient for each level of a random eff ect, we estimate 
a single parameter, the variance across levels of the random 
eff ect. Th erefore, random eff ects provide an effi  cient means 
of dealing with non-independence, such as data points from 
the same island, archipelago or taxon. Th e number of levels 
each random eff ect should have in order to obtain reliable 
estimates of variance is a matter of debate, with some argu-
ing that more than fi ve are needed (Bolker et al. 2009). 

 If we return to the hypothetical example from earlier, we 
can see how this might be treated in a mixed model frame-
work (Eq. 1). We are seeking to explain the ln(species rich-
ness  �  1), denoted  S , for observation  r  of a taxon  p  on island 
 i  in archipelago  g  as a function of the grand mean ( m ) and log 
island area ( A ) and its slope coeffi  cient ( b ). We also want to 
quantify the amount by which the observed  S  for a particu-
lar island:taxon combination  r  deviates from  the best linear 
unbiased estimate obtained from the fi xed eff ects. In equa-
tion 1,  P p   is the deviation for taxon  p ,  G g   is the deviation for 
archipelago  g ,  I  gi  is the deviation from the mean prediction 
for island  i  within archipelago  g , and   Œ pgir  is the deviation of 
the observation  r  from the mean prediction for taxon  p , archi-
pelago  g  and island  i  (known as the residual or error term). 

 S pgir     �   m   �   b A pgir   �     P  p     �     G  g     �      I  gi     �     Œ  pgir   (1)

 In a mixed modelling framework we can estimate the 
variance across all levels of  P,   G,   I  and  Œ  around a mean of 
zero. In this way, the variance estimate across taxa, archi-
pelagos and islands provides us with additional information, 
whilst also correcting for pseudoreplication. Th is is com-
monly called variance components analysis and conveys the 
amount of variance distributed among the separate random 
eff ects (Pinheiro and Bates 2000, p. 50, Zuur et al. 2009). 

 So far we have considered a LMM with the random 
eff ects of island, archipelago, taxon and residual. Th is model 
type is also called a random intercept model because island, 
archipelago and taxon are categorical variables with a num-
ber of levels across which we estimate variation around 
the grand mean. Consider a more complex case where we 
are interested not only in whether archipelagos vary in 
their intercept but also in whether the slope of the island 
area and species richness relationship varies among archi-
pelagos. We can extend the LMM approach to a random 
slope model (sometimes called random regression), where, 
we can estimate the variation of the slope across diff erent 
archipelagos (or taxa). Conceptually, the random slope (or 
random regression) model is similar to an analysis of cova-
riance (ANCOVA), where we estimate diff erent slopes for 
each level of a categorical variable by adding the interaction 
between the continuous variable and the categorical variable. 
Th e diff erence being that the object of interest is the variance 
in slopes rather than the coeffi  cient of each slope. 

 We illustrate the application of a mixed modelling 
approach to data on the richness of single island endemics 
(SIEs) collected for multiple islands, archipelagos and taxa. 
Th ese data were originally used to test the general dynamic 
model (GDM) of oceanic island biogeography (Whittaker 
et al. 2008, 2010). Th e GDM posits that the number of SIEs 
initially rises and later falls through time, coincident with 

 

 Figure 1.     A hypothetical scenario illustrating how archipelago or 
taxon eff ects can mislead. In this fi gure there is no underlying rela-
tionship (dotted line) between island area and species richness but 
data points from the same archipelago (or taxon) tend to be more 
similar than those from diff erent archipelagos (or taxa). In this case 
the slope estimated using a linear model (grey solid line) incorrectly 
identifi es a positive relationship across all islands, which is due to 
diff erences between archipelagos.  
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 Δ AICc  �  10 treated as providing no support that the model 
belongs to the best set. Akaike weights give the probability 
that a model is the best model, given the data and the set of 
candidate models (Burnham and Anderson 2004). 

 Models were fi t with lmer in the lme4 package (ver. 
0.999375-37) in R (R Development Core Team 2010). When 
comparing models that varied in their random eff ects but not 
fi xed eff ects, the models were fi t using restricted maximum 
likelihood (REML). To fi nd the most parsimonious random 
intercept structure we ran models with archipelago, island, 
taxon and taxon:archipelago (meaning the unique combina-
tion of taxon and archipelago) as random eff ects. Island is 
nested within archipelago because each island occurs only in 
one archipelago. Taxon is crossed random eff ect with respect 
to both island and archipelago, since each taxon can occur on 
more than one island or archipelago (see Glossary for defi ni-
tion of nested versus crossed random eff ects). For simplicity we 
assume that the taxa are independent of each other. In reality 
this assumption is likely to be violated because Coleoptera are a 
subclade of Arthropods and plants are more distantly related to 
snails, beetles and Arthropods than the latter are to each other. 
Methods for dealing with phylogenetic non-independence in a 
mixed model setting do exist (Hadfi eld and Nakagawa 2010), 
however, we will not consider this issue further here. Equally, 
pseudoreplication arising via island or archipelago eff ects can 
be seen as points along a continuum of spatial autocorrela-
tion. We draw the reader ’ s attention to the option of dealing 
with this continuum directly in a mixed modelling framework 
by incorporating spatial variation and covariation in the error 
term of the mixed model (note that this is not possible in the 
lme4 package but can be done using the nlme package). 

 Whittaker et al. (2008) argue that the curve of the rise 
and fall of diversity with island age will vary among archipela-
gos. Th erefore, we use a random slope model to test whether 
allowing the age versus SIE richness slope to vary among 
archipelago:taxon combinations improved model performance. 

 After determining the random eff ect structure, the most 
parsimonious combination of fi xed eff ects must be found 
using maximum likelihood (ML) rather than REML. We 
conducted AICc based multi-model inference using the 
dredge function in the MuMIn package in R (ver. 0.13.17) 
to run a complete set of models with all possible combina-
tions of the fi xed eff ects. Th e code in R for all mixed model 
analyses is given in Supplementary material Appendix 1. 

 Graphical inspection is an important tool in statistics 
(Hilborn and Mangel 1997). After graphical inspection of 
the fi nal model (Pinheiro and Bates 2000, Zuur et al. 2009), 
major diff erences in dynamics among archipelagos were 
apparent, and on this basis we chose to explore the alterna-
tive analysis of adding archipelago as a fi xed eff ect instead of 
as random eff ect (see below). Distance to mainland was not 
included as fi xed eff ect in these models due to low variation 
within archipelagos.    

 Results  

 Random effects 

 Th e lowest AICc random eff ects structure included 
archipelago, island, taxon and taxon:archipelago as random 

changes in island area, altitude and habitat diversity (Stuessy 
2007, Whittaker et al. 2007). Whittaker et al. (2008, 2010) 
applied separate linear models to unique combinations of 
archipelago and taxon and showed that by including area, 
time and time 2  as predictors (their ATT 2  model) they could 
explain a large proportion of the variance in SIE richness. 
Note that in the ATT 2  model the rise and fall of SIE rich-
ness is independent of island area. In this study we test 
whether the infl uences of area, time and time 2  on SIE rich-
ness predicted by the GDM persist when a mixed modelling 
approach is applied and additional variables are considered. 
We also highlight the further insights that a mixed modelling 
approach provides.  

 Methods  

 The island data set 

 Data (n  �  134) on the number of single island endem-
ics (SIEs), island age (in millions of years) and area (km 2 ) 
were kindly provided by R. J. Whittaker and K. A. Triantis 
(Whittaker et al. 2008, 2010). Data from four volcanic 
archipelagos, the Azores (Arthropods, Coleoptera and land 
snails), Canaries (Arthropods, Coleoptera, land snails and 
plants), Galapagos (Arthropods, Coleoptera, and plants) and 
Hawaii (Arthropods, Coleoptera, land snails and plants) were 
included. See Whittaker et al. (2008) for a full discussion of 
the selection of islands and for basic evaluation of data quality 
issues and important assumptions regarding age of islands. 
Th e data analysed here on Arthropods and Coleoptera on 
the Azores (Borges et al. 2005, Borges and Hortal 2009) and 
Coleoptera on the Canaries (Izquierdo et al. 2004) were not 
included in the study of Whittaker et al. (2008). Data on iso-
lation from the nearest island and from the mainland (both 
in km) were obtained from UNEP island directory ( �  http://
islands.unep.ch/isldir.htm  � ) and Silva and Smith (2004).   

 Statistical analyses 

 Our response variable was the number of single island endem-
ics (SIE), a diversity metric that has been used by a number of 
recent studies. For the sake of simplicity we apply a ln(n  �  1) 
transformation to the response variable, meaning that linear 
mixed modelling techniques can be applied. However, we 
refer the reader to a recent study demonstrating that when 
faced with count data of this sort, a negative binomial or qua-
si-Poisson error structure often performs better than ln(n  �  1) 
transformation (O’Hara and Kotze 2010). Our fi xed eff ects 
were the area of the island (km 2 ), distance to the mainland 
(km), distance to the nearest island (km), the geological age of 
the island (in millions of years) and its quadratic term. 

 Following Zuur et al. (2009), we fi rst selected the most 
parsimonious random intercepts structure by fi nding the 
model with the lowest Akaike information criterion corrected 
for small sample size (AICc) with all fi xed eff ects added. 
 Δ AICc is calculated as the diff erence between each model ’ s 
AICc and the lowest AICc, with a  Δ AICc  �  2 interpreted as 
substantial support that the model belongs to the set of best 
models, a  Δ AICc of 4 – 7 corresponding to less support and 
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with maximum likelihood). Th e most parsimonious model 
included archipelago, age of the island, squared age of the 
island and the area of the island (Fig. 2) as fi xed eff ects. It 
also included the interaction of archipelago with squared age 
of the island as fi xed eff ect (Table 4, Supplemeatary material 
Appendix 3). Th e variance of the random eff ects included 
were as follows: island: 12%, taxon:archipelago: 7%, taxon: 
56%, residual: 25% (Supplementary material Appendix 2). 
Th is model is based on 14 estimated parameters, 10 fi xed 
eff ects and four random eff ects. Graphical inspection showed 
that the model explained most of the variation in SIE rich-
ness (Supplementary material Appendix 3). Across all four 
archipelagos this model described an increase in SIE richness 
with island area (Fig. 2). However, the eff ect of island age 
diff ered among archipelagos. A positive near linear increase 
in SIE richness with island age was observed on the young-
est two archipelagos, the Azores and Galapagos. In compari-
son, the coeffi  cients estimated for the Canaries and Hawaii 
described a rise and fall of SIE richness with island age.    

 Discussion 

 By applying a mixed model approach to island SIE richness 
data across four volcanic oceanic archipelagos, we found that 
the ATT 2  formulation proposed by Whittaker et al. (2007, 
2008, 2010) provides an excellent description of the data. 
We also identifi ed previously unappreciated nuances that we 
will discuss below. Plotting the predicted T  �  T 2  function 
for the diff erent archipelagos (Fig. 2) revealed that on the 
Canaries and Hawaii SIE richness rose and fell with increas-
ing island age, exactly as predicted by Whittaker and col-
leagues. In both cases islands showed an increase in diversity 
for the fi rst 10 my and a decrease for the next 10 my. In 
comparison and consistent with Borges and Hortal (2009), 
we found that on the Azores and Galapagos SIE richness 
only increased with island age (Fig. 2). 

 Th e increase in SIE richness with island age on younger 
islands has a intuitive explanation; speciation, whether 
by anagenesis or cladogenesis, requires time (Price 2008, 
Rosindell and Phillimore 2010). Moreover, early in an 
island ’ s history, the more species present, the more species 
that are available to undergo renewed bouts of cladogenesis 
(Whittaker et al. 2007). A slowing of the rate of SIE accu-
mulation with time (not evident in the Azores) makes sense 

intercepts (Table 2). Fitting either a random slope of area 
or age for each taxon:archipelago led to an increase in AICc 
(i.e. the model was poorer) (Table 2). In the most parsimoni-
ous (lowest AICc) model, after fi tting the fi xed eff ects (age 
of the island, squared age of the island and the area of the 
island), archipelago explained 59% of the variation in the 
random eff ects, with the remainder being distributed as 
follows: island  �  7%, taxon:archipelago  �  3%, taxon  �  23% 
and residual  �  8%.   

 Fixed effects 

 Th e lowest AICc model shows the number of SIEs increas-
ing with both the age and area of the island but with a 
negative quadratic slope for age (Table 3, Supplementary 
material Appendix 2): species richness increases with 
area but rises and then falls over time. Th is model has 
nine estimated parameters, four fi xed eff ects and fi ve ran-
dom eff ects. Neither distance to the mainland and dis-
tance to the nearest island improved model fi t (Table 3). 
Inspection of predicted versus observed values showed that 
the model explained most of the variation in SIE richness 
(Supplementary material Appendix 3).   

 An alternative approach 

 As archipelago eff ects were much more sizeable than any of 
the other random eff ects and due to the substantial variation 
in maximum island age among archipelagos, we investigated 
whether the slopes of the eff ects of island age or area dif-
fered among archipelagos. While there was no support for 
these hypotheses when we used a random slope approach 
(Table 2), we were concerned that this might be due to the 
small number of archipelagos across which we were trying to 
estimate variance in both intercept and slope. We therefore 
adopted an alternative approach and included archipelago 
as a fi xed eff ect and tested whether allowing for an inter-
action between archipelago and various covariates (island 
age, age 2  and area) led to an improved model fi t. By fi tting 
archipelago as a fi xed eff ect and allowing for interaction with 
a covariate, we estimated both an intercept and a slope for 
each archipelago. 

 Treating archipelago as a fi xed eff ect led to a substantial 
improvement in model fi t ( Δ AICc  �  11.1, models estimated 

  Table 2. AICc for random effects model selection with single island endemics as response variable and distance to mainland, age, age 2 , area 
and distance to nearest island as fi xed effects (n  �  134). Random intercepts were included for archipelago, island, taxon and taxon:archipelago. 
Random slopes for area and age varying across taxon:archipelago combinations were tested. An X indicates that a variable was included in 
the model, whereas a blank fi eld means that the variable was not included.  

Random intercept Random slope

Archipelago Island Taxon
Taxon:

archipelago
Area within taxon:

  archipelago
Age within taxon:

  archipelago AICc

X X X X 330.80
X X X X X 334.24
X X X X X 335.26
X X X 338.71
X X X 341.09

X X X 342.95
X X X 350.91
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  Table 3. Coeffi cients for the fi xed effects of the four most parsimonious models that treat archipelago, island, taxon and taxon:archipelago as 
random effects. The number of parameters in the model (k), the AICc difference ( Δ AICc) and AICc weight is given for each model.   

Intercept
Distance
  mainland Age Age 2 Area

Nearest
  island k AICc  Δ AICc AICc weight

�0.3117 0.2410 �0.0129 0.4466 9 282.6 0.00 0.51
�0.4606 0.2336 �0.0129 0.4639 0.0018 10 284.3 1.7 0.22
�0.7650 0.0003 0.2518 �0.0132 0.4535 10 284.6 2.0 0.19
�0.8565 0.0002 0.2433 �0.0131 0.4693 0.0017 11 286.4 3.8 0.08
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Figure 2.     Prediction from the lowest AICc mixed eff ect model including the random eff ects of taxon:archipelago, island and taxon. Th e 
response variable SIE was ln(n  �  1) transformed and explained by area of the island (km 2 ) and age of the island (n  �  134). Th e grid is 
predicted from the fi xed eff ects estimates from the model with the lowest AICc (Table 4) adjusted by the random eff ect of taxon:archipelago. 
Please note that the lines are an approximation and do not include the diff erences due to the random eff ect of island.  

in the light of accumulating phylogenetic and fossil evidence 
that there are limits to diversity and that speciation rates are 
regulated by diversity (Phillimore and Price 2008, Rabosky and 
Glor 2010, Ezard et al. 2011). However, an explanation for the 
decrease in the SIE richness of the older islands is less straight-
forward. In describing the GDM, Whittaker et al. (2008, 
2010) suggested that SIE richness on old islands may fall as 
a consequence of a reduction in island area (we can discount 
this explanation as area is included in the ATT 2  model), topo-
graphic complexity and habitat diversity or by SIEs colonizing 
other islands and becoming multiple island endemics rather 
than SIEs. An alternative explanation is the taxon cycle model 
as described by Ricklefs and colleagues (Ricklefs and Cox 1972, 
Ricklefs and Bermingham 2002); perhaps old endemic species 
on the oldest islands are most susceptible to immigration of 
new colonists and the diseases that they carry. 

 Th e mixed modelling approach provided insights into 
how archipelagos, taxa and islands vary in SIE richness. For 
instance, by far the most substantial variance component was 
the archipelago eff ect, with taxon eff ect also substantial. Th is 

suggests that biogeographical coherence has a large infl u-
ence on SIE richness. We found evidence for a signifi cant 
taxon:archipelago interaction, meaning that the SIE rich-
ness of a particular taxon on a particular archipelago was not 
entirely accounted for by the main random eff ects, although 
this interaction captured relatively little variance. Island 
eff ects and the residual term were both small. 

 Whittaker et al. (2008) fi tted 14 diff erent models, one 
for each island-taxon combination, to explain the number of 
single island endemics using area, the time and the squared 
time as explanatory variables. Th us, for each of their models, 
they estimated four parameters; three slopes and one inter-
cept, summing to 56 parameters. In our lowest AICc model, 
treating archipelago as fi xed eff ect, we used 14 parameters in 
total, 10 fi xed eff ects, and four random eff ects. Th e advan-
tages of the mixed modelling framework over separate fi tting 
of terms to each archipelago:taxon combination are parsi-
mony and generality, since we have used fewer parameters 
in a single model framework, whilst modelling diff erences 
among islands, archipelagos and taxa. 
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 Random eff ects  –  grouping units drawn as a random sam-
ple from a population, for example islands, archipelagos or 
taxa. Allow estimating the variance explained by the group-
ing unit, such as diff erent islands. 

 Random intercept model  –  a model where the deviations 
of the intercepts of the levels of the random eff ect from the 
grand mean come from a normal distribution with a mean  
of zero and an estimated variance. 

 Random slope/regression model  –  extending the random 
intercept model by allowing the slope estimated for a fi xed 
eff ect to vary among the individual units of a random eff ect. 
For example, the slope of the relationship between age of the 
island and species richness varies on diff erent archipelagos. 
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