
The University of Chicago

Dissecting the Contributions of Plasticity and Local Adaptation to the Phenology of a
Butterfly and Its Host Plants
Author(s): Albert B. Phillimore, Sandra Stålhandske, Richard J. Smithers and Rodolphe
Bernard,
Reviewed work(s):
Source: The American Naturalist,  (-Not available-), p. 000
Published by: The University of Chicago Press for The American Society of Naturalists
Stable URL: http://www.jstor.org/stable/10.1086/667893 .
Accessed: 28/09/2012 16:29

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

The University of Chicago Press, The American Society of Naturalists, The University of Chicago are
collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist.

http://www.jstor.org 

http://www.jstor.org/action/showPublisher?publisherCode=ucpress
http://www.jstor.org/action/showPublisher?publisherCode=amsocnat
http://www.jstor.org/stable/10.1086/667893?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp


vol. 180, no. 5 the american naturalist november 2012

Dissecting the Contributions of Plasticity and Local Adaptation

to the Phenology of a Butterfly and Its Host Plants
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abstract: Phenology affects the abiotic and biotic conditions that
an organism encounters and, consequently, its fitness. For popula-
tions of high-latitude species, spring phenology often occurs earlier
in warmer years and regions. Here we apply a novel approach, a
comparison of slope of phenology on temperature over space versus
over time, to identify the relative roles of plasticity and local adap-
tation in generating spatial phenological variation in three interacting
species, a butterfly, Anthocharis cardamines, and its two host plants,
Cardamine pratensis and Alliaria petiolata. All three species overlap
in the time window over which mean temperatures best predict
variation in phenology, and we find little evidence that a day length
requirement causes the sensitive time window to be delayed as lat-
itude increases. The focal species all show pronounced temperature-
mediated phenological plasticity of similar magnitude. While we find
no evidence for local adaptation in the flowering times of the plants,
geographic variation in the phenology of the butterfly is consistent
with countergradient local adaptation. The butterfly’s phenology ap-
pears to be better predicted by temperature than it is by the flowering
times of either host plant, and we find no evidence that coevolution
has generated geographic variation in adaptive phenological plasticity.

Keywords: plasticity, local adaptation, space-for-time substitution,
phenology, plant-herbivore, coevolution.

The seasonal timing at which an organism expresses a
phenotype has the potential to affect the abiotic conditions
to which it is exposed and interactions with con- and
heterospecific individuals (Elzinga et al. 2007; Gilman et
al. 2010). Over the past 15 years, interest in phenology
has steadily grown, stimulated by observations across
many high-latitude taxa that, coincident with the recent
rise in global temperatures, spring phenology has become
earlier and autumn phenology later (Parmesan and Yohe
2003).
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At high latitudes, intraspecific variation in the timing
of spring life-history events, such as flowering, egg laying,
or migration, is often observed to correlate negatively with
spring temperatures across space (Jackson 1966; Carroll et
al. 2009) and time (Roy and Sparks 2000; Miller-Rushing
and Primack 2008), consistent with temperature being a
phenological cue. A correlation between an environmental
variable and phenology is likely to arise via a combination
of the effects of phenotypic plasticity and adaptive mi-
croevolution (Gienapp et al. 2008). Plasticity and genetic
change may also interact; if additive genetic variation in
phenological plasticity exists, then plasticity can evolve un-
der selection (Lande 2009), meaning that interspecific and
interpopulation variation in the slopes of reaction norms
may reflect adaptation (Visser 2008).

The degree to which the slope of phenology on tem-
perature is due to plasticity versus adaptive microevolution
can help us predict the fate of a population or species if
the climate changes (Davis et al. 2005; Phillimore et al.
2010). Consider the situation where the optimal phenology
covaries with temperature and any deviation of the mean
phenology of the population from this optimum reduces
the mean of the absolute finesses of members of a pop-
ulation (for a quantitative genetic model exploring such
a scenario more fully, see Chevin et al. 2010). Under this
scenario, if the optimum is shifted and the mean phe-
nology of the population does not track this optimum, the
population’s fate will depend on the degree to which ab-
solute fitness is reduced and the capacity of the population
for adaptive evolution. If the population tracks or partially
tracks the optimum via plasticity, mean population fitness
will decrease less, though plasticity may be costly (Chevin
et al. 2010). Based on the above scenario, if we can quantify
(i) the degree to which the optimum phenology covaries
with temperature and (ii) the degree of plasticity, we can
identify species for which changes in temperature may be
most detrimental. While quantifying phenological plastic-
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ity of individuals or populations is quite straightforward,
quantifying how absolute fitness changes with temperature
and phenology requires that selection on a phenotype is
quantified along a temperature gradient (Chevin et al.
2010). We can, however, use space-for-time substitution
to gain some insight here. If geographic variation in phe-
nology reflects local adaptation to average temperature,
then we anticipate that a shift in the interannual average
temperatures may reduce the mean fitness of populations
in the short term (Davis et al. 2005; Phillimore et al. 2010;
but for a critique of the practice of substituting space for
time, see Hansen et al. 2012).

In the scenario outlined above, the optimum phenology
is influenced by a single abiotic variable. However, phe-
nology is also key to the matching or mismatching of
interspecific ecological interactions, from the mutually
beneficial to the mutually detrimental (Forrest and Miller-
Rushing 2010). Therefore, the fitness landscape of phe-
nology in a focal species will also be affected by the phe-
nology of other species and their responses to
environmental change (Stenseth and Mysterud 2002; Vis-
ser et al. 2004). Even if we want to model only the effects
of a change in average temperature on the phenology and
fitness of populations of two interacting species, we need
estimates for several additional parameters. For instance,
in addition to knowing how the optimum phenology for
each species covaries with temperature, we need to know
how the optimum phenology changes depending on the
phenology of the other species. Because interspecific in-
teractions are important to all species and because phe-
nology must affect and be affected by such interactions,
there is great value in considering multiple interacting spe-
cies when analyzing the processes responsible for the spa-
tial and temporal correlations between temperature and
phenology.

Here we focus on the correlations between spring tem-
peratures, the emergence time of the orange-tip butterfly
(Anthocharis cardamines), and the flowering times of its
Brassicaceae hosts, the cuckoo flower (Cardamine prate-
nsis) and garlic mustard (Alliaria petiolata). Across its Eur-
asian range, A. cardamines is polyphagous and univoltine,
with the female laying a single egg on a variety of Bras-
sicaceae hosts during the flowering period (Wiklund and
Ahrberg 1978; Courtney 1981). In Britain, A. cardamines
chiefly utilizes two host plants, preferring C. pratensis in
the north and west and A. petiolata in the south (Courtney
and Duggan 1983). A study focusing on the interaction
between A. cardamines and C. pratensis revealed a narrow
window during which the butterfly lays its eggs; large
young flower heads were preferred, and the survival of
larva was best on flowers less than 8 days old (Dempster
1997). After hatching, the larva is wholly dependent on
its host plant for nutrition, consuming first the flower head

and then the seedpods. Thus, hosting a larva means a
substantial, sometimes complete, loss of seeds for the plant
(Courtney 1982). The larvae of Pierinae butterflies are the
main herbivores feeding on Brassicaceae in Britain (Chew
and Courtney 1991). Butterfly emergence times may there-
fore be under selection to match the host flowering times,
while the reverse may be true of the plants.

In addition to playing a role as a phenological cue, the
thermal environment may directly or indirectly exert se-
lection on phenology. For example, it may be advantageous
for an organism to have early phenology relative to other
individuals to minimize intra- and interspecific compe-
tition and extend the time available for growth, but the
earlier the phenology, the greater the risk of exposure to
frost. Under such a simple model, the optimum phenology
across time and space would covary with temperature and
risk of frost. In southern Britain, C. pratensis and A. pe-
tiolata tend to begin flowering in early to mid-April,
whereas flowering may be about a month later in the
north. Anthocharis cardamines also shows geographic var-
iation in its phenology across Britain, with first flying dates
typically around mid- to late April in the south and early
to mid-May in the north. Interannual variation in the
phenology of all three species in Britain has been found
to correlate negatively with spring average monthly tem-
peratures (Sparks and Yates 1997). Mean first flowering of
C. pratensis was predicted by January, February, and March
temperatures, with March temperatures being the stron-
gest predictor (Sparks and Yates 1997). Average March
temperature was also identified as the strongest predictor
of A. petiolata flowering times, with January, February,
and April mean temperatures also in the best model. April
temperature was the strongest predictor of first appearance
of A. cardamines, with March temperatures also included
in the best multipredictor model (Sparks and Yates 1997).
In a different study addressing the first flying dates of A.
cardamines based on a UK-wide survey, Roy and Sparks
(2000) identified average February temperature as the
strongest predictor. In addition to the effect of tempera-
ture, day length is known to influence the phenology of
many species, including the Brassicaceae Arabidopsis tha-
liana (Metcalf and Mitchell-Olds 2009; Wilczek et al.
2010). Latitudinal variation in spring day lengths may
therefore contribute to spatial variation in phenology of
some species, for instance, by delaying the time period
over which phenology is sensitive to temperature. To date,
few macroecological studies exploring phenological vari-
ation have integrated day length and temperature infor-
mation (e.g., Caffara et al. 2011) or tested whether the
time period over which phenology is sensitive to temper-
ature varies geographically (e.g., Husby et al. 2010).

In this study, we aim to distinguish between three types
of explanations for observed phenological trends in A.
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cardamines, C. pratensis, and A. petiolata. Identifying how
the interactions among these species may potentially be
affected under future climate change scenarios depends on
the degree to which each of the following hypotheses is
operating: (i) the plastic hypothesis, under which all three
species respond with similar plasticity to similar cues and
there is no evidence for local adaptation with respect to
temperature or the phenology of other species or of adap-
tive plasticity; (ii) the temperature-mediated local adap-
tation hypothesis, under which the optimum phenology
varies spatially with average temperature and population
means track local thermal optima; and (iii) the biotic ad-
aptation hypothesis, under which local adaption and adap-
tive plasticity in butterfly emergence times are driven by
flower availability.

We combine spatiotemporal phenological data from
across Britain with daily mean temperature data and day
length information. To these data we apply a new statistical
approach that allows us to estimate temperature-mediated
plasticity and local adaptation from the slope of phenology
on temperature over space and time for each species (Phil-
limore et al. 2010; fig. 1A, 1B). In order to identify the
time window over which phenology is most sensitive to
temperature, we conduct an extensive search over different
time windows, including allowing the position of the time
window to shift latitudinally with day length. We then test
whether the emergence time of the butterfly is plastic or
locally adapted with respect to the flowering time of either
host plant (fig. 1C, 1D). Finally, we ask whether slopes of
phenology on temperature at colocations are positively
correlated between the butterfly and its host plants, as
expected if plant-herbivore interactions have driven adap-
tive evolution of phenological plasticity.

Methods

Data

We considered spatially referenced observations of first
appearance (Anthocharis cardamines, ) and firstn p 14,524
flowering (Cardamine pratensis, ; Alliaria pe-n p 9,994
tiolata, ) from across the United Kingdom overn p 9,790
the period 1996–2009. These observations were made by
citizen scientists and collated by the UK Phenology Net-
work (UKPN, http://www.naturescalendar.org.uk). Each
observation represents the first event seen by an individual
observer in a year. We converted dates to ordinal dates,
starting with January 1 as day 1, and excluded observations
made on or after day 200 for A. cardamines ( ) andn p 2
day 175 for the plant species (C. pratensis, ; A. pe-n p 4
tiolata, ). While the use of first dates to quantifyn p 2
variation in phenology has been criticized (Moussus et al.
2010), we use simulations to show that under most sce-

narios slope estimates will be unbiased (app. A, available
online; see also Clark and Thompson 2011). A bias will
be introduced if there is a correlation between temperature
and the number of individuals encountered, which is itself
the product of local abundance and recorder effort.

We used UK Met Office daily mean temperatures in-
terpolated over a grid at -km resolution (� British5 # 5
Crown Copyright [2009], the Met Office; Perry et al.
2009; http://www.metoffice.gov.uk/climatechange/science
/monitoring/ukcp09/). Phenological observations were as-
signed to the -km grid cells in which they were re-5 # 5
ported. This meant that a single -km cell could po-5 # 5
tentially include several observations in a single year.
Observations were excluded for a few locations that lacked
interpolated climate data. Day length (time from sunrise
to sunset) in minutes was calculated for each day by ap-
plying sunrise and sunset equations (Meeus 1991) to the
centroid of every -km grid cell.5 # 5

Our analyses require the delimitation of populations.
We therefore assigned -km grid cells to larger5 # 5

-km grid cells, which we treated as random ef-150 # 150
fects in statistical analyses (fig. B4, available online). While
the -km grid cells delimit populations in an150 # 150
arbitrary way, we chose cells of this size to provide a bal-
ance between number of populations and number of years
of observations per population and to minimize the in-
fluence that spatial measurement error in temperature will
have on slopes. We used the spatial relational database
PostgreSQL, version 8.3.5 (PostgreSQL Global Develop-
ment Group), and PostGIS, version 1.3.4, to store and
query the data via the RpostgreSQL R package.

Model for Estimating Plasticity and Local Adaptation

If we can identify the proximate environmental cue used
to predict phenology—here we assume that this is the
average temperature during a particular time window—
and this cue varies over time and space, then it is possible
to separate the contributions that plasticity and local ad-
aptation make to spatiotemporal variation in phenology
(Phillimore et al. 2010). In order to separate the two re-
quires that we assume that all populations have the same
linear slope (or population mean reaction norm) of the
mean population phenological response on average tem-
perature (which we term “mean plasticity”). The slope of
phenology on temperature through time, the temporal
slope, will be due to mean plasticity plus any association
between breeding values and temperature, that is, adaptive
microevolution. It is possible that, in addition to the con-
tribution of individual plasticity, mean plasticity may also
be affected by changes in the stage structure of a popu-
lation if the phenology of an individual depends on its
age (Ozgul et al. 2009; van de Pol et al. 2012). Such a

http://www.naturescalendar.org.uk
http://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/
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Plasticity to temperature,
no local adaptation

A.

Temperature

Plasticity to temperature,
co-gradient local adaptation

B.

Plasticity to host,
no local adaptation

C.

Host plant phenology (ordinal days)

Plasticity to host,
co-gradient local adaptation

D.

Figure 1: Schematic showing slopes of phenology on temperature (A, B) and phenology (C, D) of a host plant. In each plot the red lines
correspond to the mean within-population reaction norms through time (temporal slopes), and the blue line corresponds to the between-
population reaction norm (over space). If the temporal slopes are estimated over a limited number of years relative to the focal species’
generation time, they provide an estimate of mean population phenological plasticity. The spatial slope should arise due to mean population
phenological plasticity plus local adaptation. Therefore, if the spatial slope differs from the temporal slope, this reveals local adaptation (see
“Methods” for further details). A corresponds to phenological plasticity with respect to temperature and no local adaptation. B reveals
phenological plasticity with respect to temperature plus cogradient local adaptation. C corresponds to phenological plasticity with respect
to host plant phenology and no local adaptation. D reveals some plasticity plus cogradient local adaptation with respect to host plant
phenology. For depiction of further scenarios, we refer readers to figure 1 in Phillimore et al. (2010).

process could contribute to the temporal slope estimated
for the perennial C. pratensis but can be discounted in the
case of the univoltine butterfly and biennial A. petiolata.

If the time series spans few generations and the inter-
annual relationship between time and temperature is not
monotonic, then it may be reasonable to assume that the
contribution made by microevolution is small to negligible
and the temporal slope will therefore provide an estimate

of mean plasticity. On the basis of the similarity between
individual and population phenological reaction norms
(Charmantier et al. 2008) and the paucity of evidence for
adaptive phenological microevolution over ecological
timescales even from long-term studies (Merilä 2012), we
suggest that this assumption may not be unreasonable.

Where a temporally consistent geographic cline in en-
vironment exists, as is often the case for temperature, over
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generations an association between breeding values and
the long-term average temperature in a location, that is,
local adaptation, may develop. Therefore, the slope of phe-
nology on temperature between populations, the spatial
slope, should be the result of mean plasticity plus local
adaptation. We treat the difference between the temporal
and spatial slopes as an estimate of the degree of local
adaptation with respect to temperature (see fig. 1A, 1B).

Statistical Analysis

In order to estimate slopes at two hierarchical levels si-
multaneously, we followed the approach outlined by Phil-
limore et al. (2010), implementing a generalized linear
mixed model (GLMM) with bivariate response using the
MCMCglmm R package (Hadfield 2010). We treated phe-
nology (P) and average temperature in a specified time
window (T) as a bivariate response and included three
random effects: (i) -km grid cell, (ii) year, and150 # 150
(iii) a residual term. For each random effect (R), we ob-
tained a posterior distribution for the variance and co-
variance between phenology and temperature:

2j jPR PR, TR . (1)2j j⎣ ⎦PR, TR TR

The quantity estimates the slope of phenology2j /jPR, TR TR

on temperature for a particular random effect. We esti-
mated the spatial and temporal slope by treating grid cell
and year, respectively, as random effects. The residual term
estimates the spatial slope within a grid cell in a single
year, though this slope is likely to be an underestimate of
the true slope due to measurement error in the interpo-
lated temperatures. We obtained a posterior distribution
for each slope estimate and report the 95% highest pos-
terior density (HPD). We also estimated the 95% HPD for
the slope difference (Db), which is the spatial slope minus
the temporal slope. In this statistical framework, we are
currently unable to deal with spatial autocorrelation of
observations among grid cells or, related to this, nonin-
dependence of populations caused by gene flow (Stone et
al. 2011).

The MCMCglmm approach estimates the spatial and
temporal variance in a bivariate response, while we are
interested in the degree to which one of these response
variables (temperature) explains the other (phenology).
For this reason, the standard measures of model fit are
not useful here. Instead, we compare models based on
pseudo-R2 (Phillimore et al. 2010), where we quantify the
proportion of the total variance in phenology across k
random effects that can be explained by temperature:

2 2� (j /j )PR , TR TRk k k2R p . (2)
2� jPRk

We used the following protocol to identify the latitudinally
invariant time window (LITW) over which average tem-
peratures best predicted spatiotemporal variation in phe-
nology. For each species, we considered all combinations
of starting points (from day 1 to day 101 in 5-day itera-
tions) and durations of time windows (from day 10 to day
120 in 5-day iterations), subject to the constraint that the
time window could not extend beyond the 97.5th percen-
tile of the observed phenological distribution. We ran the
MCMCglmm for 23,000 iterations for each time window
with the default priors (for [co]variance components, they
are drawn from the inverse-Wishart distribution with

and ; for the mean, they are drawn fromV p 1 n p 0.0002
a normal distribution with mean p 0 and variance p
108). We sampled every 10 iterations and removed the first
3,000 iterations as burn-in. To assess model mixing, we
plotted the traces of the posterior distributions for means
and variance-covariance components. In addition, we
checked the degree of autocorrelation in the posterior sam-
pling. We used our measure of pseudo-R2 to identify the
time window over which average temperatures best predict
spatiotemporal variation in phenology. As many overlap-
ping time windows yielded similar R2 values, to capture
model uncertainty, we report slope estimates across all
models within 0.02 R2 units of the highest value (note that
this is an arbitrary choice of cutoff).

We also implemented a day length–initiated time win-
dow (DLTW) model, where the starting day of the time
window was initiated when a certain day length threshold
was reached. In these models, starting point refers to the
start date in the southernmost grid cell. We then calculated
the day length for this ordinal day in this cell, and the
starting point for all other cells was the date on which this
day length was first reached/exceed. We considered the
same range of starting points and time window durations
outlined above for LITW models. As the end date of the
time window varies latitudinally in the DLTW models, we
considered it more biologically appropriate to model the
phenological response as a lag time (i.e., date of phenology
minus end date of time window in that particular -5 # 5
km grid cell) rather than as an ordinal date. The measure
of pseudo-R2 (eq. [2]) proved inadequate for comparisons
among DLTW models and between these models and the
LITW models. This is because by analyzing lag times rather
than ordinal dates, we tended to reduce the spatial vari-
ation in phenology that could be explained by temperature,
thereby reducing the pseudo-R2. As a remedy, for model
comparisons involving DLTW models we considered only
the temporal correlation between temperature and lag
time/phenology, estimating a temporal pseudo-R2 by in-
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cluding year as the only random effect in equation (2)
(i.e., excluding the spatial and residual terms). The ad-
vantage of this is that year-to-year variation in day length,
and therefore the end of the time window at a single site,
is negligible. While this approach is not ideal, as the R2

does not include spatial and residual variance, it is broadly
similar to the approach recently applied to identify the
most predictive time windows for two geographically sep-
arated populations of Parus major (Husby et al. 2010).

Phenological observations were distributed heteroge-
neously over space and time (figs. B1–B3, available online).
Although our approach can handle unbalanced data, if
temporal slopes vary among locations, our temporal slope
estimate will tend toward that found in better-sampled
locations. Also, if there is nonstationarity of the spatial or
temporal slope, the estimated slope will tend toward the
slope estimated for better-sampled locations or years.

Extending the Model to a Multispecies Framework

To explore local adaptation and plasticity of the phenology
of the butterfly with respect to host plant phenology, we
can substitute spatiotemporal variation in host plant phe-
nology for temperature in the model outlined above (fig.
1C, 1D). We extended the test outlined by Phillimore et
al. (2010) for estimating temperature-mediated plasticity
and local adaptation for a single species to a multispecies
framework. This allowed us to test whether A. cardamines
is locally adapted to the phenology of one of its host plants
or to local average temperatures. We included data on the
phenology of all three species plus temperature data (av-
erage temperatures for the LITW that best predicted A.
cardamines phenology) as a multivariate response. In ad-
dition, we included 150-km grid cell and year as random
effects. The multivariate response variable included a lot
of missing data for phenology. For example, when phe-
nology of one species was entered, temperature was pre-
sent, but the phenology of the two other species was miss-
ing. The MCMCglmm approach was able to deal with this
by treating such cases as missing at random (Nakagawa
and Freckleton 2008); that is, data were updated condi-
tional on the model. We ran MCMCglmm (Hadfield 2010)
using the default prior described above for 23,000 itera-
tions, removing the first 3,000 as burn-in.

For each random effect, R, we estimated the posterior
distribution of a variance-covariance matrix,4 # 4
wherein the phenology of the butterfly (A) and host plants
(C and G) are denoted with subscripts:

2j j j jAR AR, CR AR, GR AR, TR⎡ ⎤
2j j j jAR, CR CR CR, GR CR, TR . (3)2j j j jAR, GR CR, GR GR GR, TR⎢ ⎥

2j j j j⎣ ⎦AR, TR CR, TR GR, TR TR

Using the posterior distributions of the variance-
covariance matrix for each random effect, we were able
to estimate the degree to which the host plants’ phenology
predicted the phenology of the butterfly ( and2j /jAR, CR CR

) over space and time and Db, which tests2j /jAR, GR GR

whether spatial variation in the butterfly’s phenology
shows local adaptation to the phenology of the host. If
plant and butterfly populations were to respond with the
same plasticity to the same environmental cue, the slopes
over space and time would be the same. Alternatively, if
the optimum timing for butterfly emergence is set by the
flowering time of the host, and assuming the cue used for
butterfly emergence does not allow perfect prediction of
the host plant phenology, local adaptation may result in
the spatial slope (of butterfly phenology regressed on host
phenology) being steeper than the temporal slope (fig. 1D;
Lande 2009; Phillimore et al. 2010).

However, if the phenology of the two host plants and
the butterfly all correlated with one another and temper-
ature across space and time, bivariate analyses could have
been misleading. To address this problem, we employed a
multiple regression approach. We estimated A (eq. [4]),
the variance-covariance matrix among predictors (plant
phenology and temperature), and B (eq. [5]), the covari-
ance between the response (A. cardamines phenology) and
the predictors for two random effects, grid cell and year:

2j j jCR CR, GR CR, TR⎡ ⎤
2A p j j j , (4)R CR, GR GR GR, TR⎢ ⎥

2j j j⎣ ⎦CR, TR GR, TR TR

B p [ j j j ] , (5)R AR, CR AR, GR AR, TR

where yields the multiple regression coefficients�1A BR R

treating plant phenology and temperature as predictors of
A. cardamines phenology. This calculation was repeated
across the posterior distribution of AR and BR to obtain
estimates of the 95% HPD for each coefficient. For each
predictor we also estimated the posterior distribution for
Db, and if the 95% HPD did not overlap 0, this would
support the hypothesis that local adaptation is with respect
to that predictor.

We also assessed the correlations among species and
temperature over space and time by transforming each
posterior sample of variances and covariances into a cor-
relation matrix. To examine the consequences of spatial
and temporal variation in phenology for interspecies syn-
chrony, we assessed the reduced major axis slope between
the butterfly and two plant species over space and time.
This was estimated as the slope of the phenology of A.
cardamines regressed on that of one of its host plants,
divided by the correlation coefficient between the butterfly
and the host plant.
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Test for the Influence of Coevolution

Above we have assumed that phenological plasticity with
respect to temperature is a constant across populations,
but it is possible that plasticity may vary among popula-
tions as a form of local adaptation. Local interactions be-
tween a host plant and a butterfly may exert strong re-
ciprocal selection on the phenology of each species. For
instance, if seed predation by A. cardamines leads to a
population of one host plant evolving a shallower (or
steeper) mean plastic response with respect to temperature,
this may in turn exert selection for a shallower (or steeper)
plastic response in the butterfly. Thus, if adaptation in the
butterfly keeps up with changes in the host plant phe-
nology, we anticipate that a positive correlation may arise
between the temporal slopes estimated for butterfly pop-
ulations and host plant populations in the same location.
However, even if a positive correlation were detected, we
would still need to be cautious in interpreting this as evi-
dence for coevolution for two reasons. First, it is possible
that other geographically varying drivers cause evolution
of either the host plant’s or the butterfly’s phenological
plasticity. The positive correlation could therefore be the
sole result of adaptation of the butterfly to the host plant
or vice versa rather than being reciprocal, as coevolution
implies (Janzen 1980; Nuismer et al. 2010). Second, it is
possible that other geographically varying variables affect
the temporal slope of both species simultaneously (Janzen
1980; Nuismer et al. 2010); for example, measurement
error in temperature may vary among grid cells.

We estimated the slope of phenology on average tem-
perature for -km grid cells that each had 50 or150 # 150
more phenological observations for a species drawn from
at least 5 years. We selected the time window over which
A. cardamines is most sensitive to temperature as the pre-
dictor for all species. This will tend to slightly depress the
temporal slopes estimated for the plants. We calculated the
yearly mean temperature in a grid cell and assigned this
to all observations in that year. We then estimated the
temporal slope for each grid cell in a mixed-effects model
with yearly mean temperatures as a predictor and year as
a random effect. Finally, we examined the intergrid cell
correlation between the temporal slope estimated for each
A. cardamines population and for each of the host plants.

All analyses were conducted in the R statistical pro-
gramming environment (v2.14.1; R Development Core
Team 2011). R code for latitudinally invariant models is
available online.1 Phenology and average temperature data
during the LITW that best predicted each species’ phe-

1. Code that appears in the American Naturalist is provided as a conve-

nience to the readers. It has not necessarily been tested as part of the peer

review.

nology can be downloaded from Dryad (http://dx.doi.org
/10.5061/dryad.733d9).

Results

Temperature and Phenology

LITW. For all three species, spatiotemporal variation in
phenology was strongly predicted ( ) by models2R 1 0.29
that included the average temperature over an LITW (fig.
2A–2C), and the best time windows overlapped substan-
tially among species. The time windows over which average
temperature best predicted phenology all started before
the phenological events but showed some overlap with the
distribution of phenology. Average temperatures over the
period from day 61 to day 125 best predicted the flight
times of Anthocharis cardamines (fig. 2A; ), while2R p 0.38
the time window that best predicted the flowering times
of Cardamine pratensis and Alliaria petiolata ended a little
sooner, spanning the periods from day 61 to day 95 and
from day 46 to day 95, with and 0.42, respec-2R p 0.30
tively. In all cases, there were several other overlapping
time periods over which the predictive power of average
temperature, measured as pseudo-R2, was similar. In gen-
eral, there was a tendency for slope estimates across time
and space to become steeper with increasing pseudo-R2.
Over each of the best-predicting time periods, tempera-
tures varied a little more among years than grid cells (table
1).

The phenology of A. cardamines over space and time
was more advanced when spring temperatures were higher.
Across space (best model posterior median ,b p �3.94
95% HPD p �5.60 to �1.97) and time ( , 95%b p �8.34
HPD p �10.21 to �6.75), the slope departed significantly
from 0 (fig. 2D, 2G). The steep slope across time is con-
sistent with pronounced phenological plasticity and was
significantly steeper than the slope across space (Db p

, 95% HPD p 2.13–7.07), indicating that counter-4.48
gradient local adaptation had counteracted some of the
effects of plasticity over space, thereby reducing spatial
variation in phenology. For all models with an R2 within
0.02 of the best model, Db was significant (fig. 2D). The
residual term in the best model was weakly but signifi-
cantly negative ( , 95% HPD p �1.09 tob p �0.77
�0.43).

Flowering times of C. pratensis exhibited a pronounced
negative relationship with average spring temperatures
(fig. 2E, 2H). For the highest pseudo-R2 model, the slopes
across space ( , 95% HPD p �8.85 to �2.06)b p �5.54
and time ( , 95% HPD p �7.91 to �4.43) wereb p �6.07
similar ( , 95% HPD p �2.81–4.60), consistentDb p 0.49
with the null hypothesis that phenological plasticity can
account for all of the spatiotemporal variation in phe-

http://dx.doi.org/10.5061/dryad.733d9
http://dx.doi.org/10.5061/dryad.733d9


0 50 100 150

0.0

0.1

0.2

0.3

0.4

Critical window, ordinal days

R
2

A

0 50 100 150

0.0

0.1

0.2

0.3

0.4

Critical window, ordinal days

B

0 50 100 150

0.0

0.1

0.2

0.3

0.4

Critical window, ordinal days

C

-8 -7 -6 -5 -4

-8

-7

-6

-5

-4

Spatial slope

Te
m

po
ra

l s
lo

pe

-8 -7 -6 -5 -4

-8

-7

-6

-5

-4

Spatial slope

E

-8 -7 -6 -5 -4

-8

-7

-6

-5

-4

Spatial slope

F

2 4 6 8 10

90

100

110

120

130

140

Mean temperature over days 61 - 125

Fi
rs

t o
bs

er
va

tio
n

G

2 4 6 8 10

90

100

110

120

130

140

Mean temperature over days 61 - 95

Fi
rs

t f
lo

w
er

in
g

H

2 4 6 8 10

90

100

110

120

130

140

Mean temperature over days 46 - 95

Fi
rs

t f
lo

w
er

in
g

I

Figure 2: Variation in model fit (as measured by pseudo-R2) of MCMCglmm bivariate model across different time windows for Anthocharis
cardamines (A; 347 models), Cardamine pratensis (B; 330 models), and Alliaria petiolata (C; 330 models). The gray boxes delimit the 2.5th
and 97.5th percentiles for the distribution of observed first phenology dates. Black horizontal lines correspond to the values that have a
pseudo-R2 within 0.02 of the best model (high-R2 models). D–F report the slope estimates of phenology on temperature over space and
time from the high-R2 models. The parameters estimated under the best model are denoted with a plus sign, and black dots are used to
denote models for which the 95% highest posterior density of the difference between the spatial slope and the temporal slope does not
include 0. Slope estimates over space (black lines) and time (gray lines) for the time window that yielded the highest pseudo-R2 are shown
in G–I. Each data point represents the mean estimated for a grid cell, with a diameter proportional to the log of the number of observations.
The black lines correspond to the slope of phenology on temperature across space obtained from a linear mixed-effects model using the
mean temperature for each 150-km grid cell and including grid cell as a random effect. The gray lines correspond to the slope of phenology
on temperature within populations (temporal slope) obtained from a linear mixed-effects model using the mean temperature for each year
and including year as a random effect. Temporal slopes were estimated only for grid cells with observations from 5 years or more.
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Table 1: Estimated variances in average temperatures (�C) across time and space for
the time periods that best predict the phenology of the three focal species

Species
Time period

(days)
Variance over

space
Variance over

time
Residual
variance

Anthocharis cardamines 61–125 .72 .94 .28
Cardamine pratensis 61–95 .69 1.71 .34
Alliaria petiolata 46–95 .58 1.91 .29

Note: Variances were estimated from cells and years where the focal species was recorded, rather

than every 5 km # year combination. Estimates are from the MCMCglmm used to estimate slopes.

nology. These patterns broadly held across models with R2

within 0.02 of the best model (fig. 2E). The slope for the
residual term ( , 95% HPD p �2.82 to �1.97)b p �2.40
was negative and departed significantly from 0.

Alliaria petiolata flowered earlier when spring condi-
tions were warmer (fig. 2F, 2I). Across space (b p
�6.23, 95% HPD p �7.66 to �4.73) and time (b p

, 95% HPD p �7.15 to �4.22), the slopes of phe-�5.72
nology on temperature for the highest pseudo-R2 model
were similar ( , 95% HPD p �2.60–1.48),Db p �0.53
consistent with the null hypothesis of plasticity and no
local adaptation. Note also the similarity of these slopes
to those estimated for C. pratensis. There was little vari-
ation in slope estimates across models with an R2 within
0.02 of the best model (fig. 2F). The residual slope was
negative and departed significantly from 0 ( ,b p �2.59
95% HPD p �2.96 to �2.15).

DLTW. The best DLTW for A. cardamines started on
day 56 in the far south (day 63 in the far north), where
the day length was 642 min, and extended to day 115 (day
122 in the north; fig. 3E, 3G). Over this period the tem-
poral R2 was 0.95 (fig. 3D). Adoption of this time window
led to a slightly shallower spatial slope estimate (b p
�2.14, 95% HPD p �4.36 to �0.10) and a temporal
slope similar to that estimated using the best LITW
( , 95% HPD p �9.35 to �6.78); the slopeb p �8.03
difference remained significant. In comparison, the highest
temporal R2 for an LITW model was 0.95 for days 56–
125, and for days 61–125 (identified as the highest pseudo-
R2 model above), the temporal R2 was 0.93.

For C. pratensis the highest temporal R2 DLTW model
was 0.95 for days 56–95 in the most southerly cell (days
64–103 in the most northerly cell; day length p 642 min;
fig. 3E). The parameter estimates obtained for this time
window were substantially shallower over space (b p
�3.71, 95% HPD p �7.42–0.09) than time (b p
�5.97, 95% HPD p �7.35 to �4.65), though not sig-
nificantly so. The LITW model with the highest temporal
R2 (p0.95) also ran from day 56 to day 95 (fig. 3B) and
corresponded to the third-highest full model pseudo-R2

(p0.29). In comparison, for the period from day 61 to

day 95 (identified as the highest pseudo-R2 model above),
the temporal R2 was 0.92.

The best DLTW for A. petiolata was identical to that
identified for C. pratensis, spanning the period from day
56 to day 95 in the southernmost cell (from day 63 to day
102 in the northernmost cell; day length p 643 min; fig.
3I), with a temporal R2 of 0.92 (fig. 3F). Also consistent
with the findings for C. pratensis, adoption of this DLTW
led to a quantitative change in slope estimates, with the
spatial slope shallower than estimated for the best LITW
(spatial , 95% HPD p �6.31 to �3.12; tem-b p �4.65
poral , 95% HPD p �7.42 to �4.45), but theb p �5.89
slope difference remained nonsignificant. The highest
pseudo-R2 LITW model also returned the highest temporal
R2, 0.93 (fig. 3C).

Is Local Adaptation of the Butterfly to Temperature
or Host Plant Phenology?

When the phenology of either of the host plants was con-
sidered as a predictor of the phenology of A. cardamines,
slope estimates were positive, with the slope over space
significantly shallower than the slope over time in both
cases (fig. 4). However, the bivariate tests of temperature
and host phenology show that these variables are also cor-
related over time and space. Therefore, to distinguish
whether A. cardamines was locally adapted to average tem-
perature (over days 61–125 LITW) or the phenology of
one of the host plants, we estimated partial correlations
across time and space (fig. 4). While the slope estimates
for C. pratensis remained positive, they were substantially
shallower and there was no evidence for local adaptation.
There was no evidence for local adaptation to A. petiolata
or average temperature, but the spatial slope estimates
departed substantially from those estimated using bivariate
analyses, and in one case the spatial slope estimate for A.
petiolata was positive. Multicollinearity appears to be a
likely explanation, given the very high correlation between
temperature and A. petiolata across space ( ).r p �0.94
After removing A. petiolata from the analysis, we obtained
slope estimates for temperature and C. pratensis across
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Figure 3: Variation in model fit (as measured by temporal R2) of MCMCglmm bivariate model across latitudinally invariant (A–C) and
day length–initiated (D–F) time windows for Anthocharis cardamines (A, D), Cardamine pratensis (B, E), and Alliaria petiolata (C, F). The
gray box delimits the 2.5th and 97.5th percentiles for the distribution of observed first phenology dates. Black horizontal lines correspond
to the values that have a pseudo-R2 within 0.02 of the best model (high-R2 models). G–I show the relationship between the day in the
most southerly grid cell with phenology data for each species and day length (blue line) and the ordinal day in the most northerly cell that
is of equal day length (black line).

space and time that were more in keeping with the slopes
estimated in bivariate analyses (fig. 4). The slope of flight
times for A. cardamines on temperature was significantly
negative over space and time, with the latter slope being
significantly steeper than the former. The slopes estimated
for C. pratensis were almost identical over space and time.

Regardless of the cues and mechanisms involved in the

butterfly’s phenological plasticity, one of its primary roles
is likely to be in synchronizing with the host plants’ phe-
nology. Reduced major axis regression between A. car-
damines and its host plants revealed that while the slope
was shallower than 1 over space (C. pratensis p 0.59, 95%
HPD p 0.42–0.83; A. petiolata p 0.85, 95% HPD p 0.52–
1.27), it marginally and nonsignificantly exceeded 1 over
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phenology of both host plants; Mreg2 p multiple regression in-
cluding temperature and Cardamine pratensis phenology.

time (C. pratensis p 1.15, 95% HPD p 0.73–1.60; A.
petiolatap 1.17, 95% HPD p 0.77–1.68). This means that
while first flowering of the host plants occurs well before
the butterfly is observed flying in the warmer southwest

of the United Kingdom, in the colder north the first flying
date coincides with the first flowering dates (fig. 5). As
the temporal slope does not depart from 1, this suggests
that the species in a particular area experience a fairly
consistent degree of matching/mismatching in different
years.

Does Geographic Variation in Plasticity Contain a
Signature of Coevolution?

There is little intraspecific variation in temporal slope es-
timates (fig. 2G–2I), much of which may be attributable
to estimation error only. This suggests that there is little,
if any, local adaptation in plasticity. Consistent with this
interpretation, we found no evidence for a positive cor-
relation between the temporal slopes estimated for A. car-
damines populations and those of either host plant (fig.
6).

Discussion

We find most support for the hypothesis that plasticity
maintains spatiotemporal interactions between the but-
terfly and the plants. All three species respond to a largely
temporally overlapping thermal cue and with similar plas-
ticity. There is some support for temperature-mediated
local adaptation in Anthocharis cardamines, but we find no
evidence that biotic interactions are driving adaptive evo-
lution in this system. Adaptive evolution of the butterfly’s
phenology in the distant past may explain the congruence
between butterfly and host plant phenology. However, we
cannot discount species sorting and happenstance during
postglacial range expansion as an alternative explanation;
perhaps the apparent specialization of the butterfly on
these host plants arose because they happen to have similar
temperature-mediated phenological plasticity.

All three species show a strong phenological response
to spring temperatures during a short time period running
between approximately days 46–95 for the plants and days
61–125 for the butterfly, though there is some uncertainty
regarding the exact period for each species. For none of
the species did we find evidence to prefer a model where
the time window varied latitudinally, initiated by a day
length threshold, over a model where the time window
was latitudinally invariant. For A. cardamines, the most
likely explanation is that while day length is used by but-
terflies as a cue for various life-history stages (e.g., Gott-
hard et al. 1999), ambient temperature is the chief cue
determining emergence dates in temperate species (Bryant
et al. 2002). Given the evidence that day length effects the
timing of flowering in Arabidopsis thaliana (Metcalf and
Mitchell-Olds 2009), the absence of evidence for day
length being important in determining the time window
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Figure 5: Correspondence between the mean phenology of Anthocharis cardamines and its host plants, Cardamine pratensis (A) and Alliaria
petiolata (B), over space and time. Over space, the relationship (black lines) is between the mean phenology of the butterfly and host plant
per grid cell. Over time the relationships (gray lines) are between the mean phenology of the butterfly and host plant per year in a single
grid cell. Temporal slopes were estimated only for grid cells with 50 or more observations of phenology of each species data from 5 years
or more. Slopes and intercepts were estimated via reduced major axis regression.

for the two Brassicacea warrants deeper consideration. One
possible explanation is statistical power. Indeed, the most
predictive time windows all start during a period when
the latitudinal cline in day length across the United King-
dom is relatively shallow (fig. 3G–3I). Alternatively, the
explanation may instead reflect biology; perhaps a day
length requirement operates independently of the time
window and is met at all latitudes before the first flowering
date at any latitude, in which case it will not contribute
to spatial variation in phenology.

Our slope estimates are consistent with spring temper-
ature-mediated phenological plasticity dominating spatial
variation in the emergence time of A. cardamines and flow-
ering times of Cardamine pratensis and Alliaria petiolata.
For the two Brassicaceae, we have no evidence for local
adaptation. Thus, we predict that if individuals of either
species were transplanted from the north to the warmer
south of Britain, they would flower earlier than individuals
at the home locality but at the same time as the southern
population. The slope estimates for C. pratensis and A.
petiolata flowering times (∼6-day advance per 1�C increase
in mean temperature) correspond closely to those esti-
mated for a longer UK-based time series (Sparks and Yates
1997). Across the locations and years where observations
were made, the mean temperature in the time windows

that best predicted the phenology of the plant species var-
ied substantially more over time than space (ratio of var-
iance in temperature over time versus that over space
equals 2.48 in C. pratensis and 3.29 in A. petiolata). Such
a ratio of time-varying selection to spatially varying se-
lection is not conducive to local adaptation (Kawecki and
Ebert 2004).

Unlike the phenology of its host plants, the phenology
of A. cardamines appears to be locally adapted to tem-
perature in a countergradient pattern (Conover and Schulz
1995), meaning that adaptive genetic change over space
counteracts or compensates for the plastic change of phe-
nology with temperature (Grether 2005). Multiple-regres-
sion-based analyses suggest that local adaptation is with
respect to temperature rather than host plant phenology.
It remains possible that populations could be locally
adapted to the phenology of different plant species in dif-
ferent areas (e.g., C. pratensis in the north and A. petiolata
in the south) or to a wider time window corresponding
to the period where either host plant is available. We an-
ticipate that the effect of local adaptation means that if A.
cardamines individuals were transplanted from northern
Britain to southern Britain, the translocated individuals
should emerge earlier than the local population. A similar
countergradient pattern has been observed in the devel-
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Figure 6: Relationship between the temporal slopes (of phenology on temperature) for different populations of Anthocharis cardamines
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opment times of other high-latitude ectotherms, for ex-
ample, Rana temporaria, and is hypothesized to arise due
to time constraints imposed by a shorter summer in the
north (Laugen et al. 2003). Interestingly, Roy and Asher
(2003) observed that while the phenology of several British
butterfly species is strongly correlated with temperature
through time, across different latitudes and longitudes,
over which there are pronounced temperature clines, the
mean phenology of many species shows remarkably little
variation. One interpretation of these findings is that coun-
tergradient local adaptation in the form of faster devel-
opment in colder areas may be widespread among high-
latitude Lepidoptera (Roy and Asher 2003). While
evidence for local adaptation on this mesoscale was some-
what surprising to us in light of the mobility of A. car-
damines and the greater temporal than spatial heteroge-
neity in average temperatures, reciprocal transplant studies
have revealed local adaptation of butterflies to temperature
on a comparable spatial scale (Pelini et al. 2009). However,
Roy and Asher (2003) also raised an alternative expla-
nation for the difference between spatial and temporal
slopes: that larvae inhabiting colder areas may select
warmer microclimates for pupation. This means that we
would overestimate the spatial variance in temperature to
which the pupae are exposed and underestimate the spatial
slope. It is plausible that such thermotaxic behavior by the
larvae could be a consistent and plastic response to the
environment. Unfortunately, we are unable to distinguish

between these hypotheses using the broad-scale climatic
and phenological data at hand.

A consequence of the spatial slope in A. cardamines
being shallower than that of its hosts is that the interval
between the hosts’ first flowering date and the butterfly’s
first flying is shorter in the colder north (fig. 5), with
butterflies seen before the first flowering of A. petiolata in
some instances. Host availability rather than host prefer-
ence may therefore explain the tendency of A. cardamines
to exploit A. petiolata in the south and west and C. pratensis
further north and east (Courtney and Duggan 1983). If
the sole selection pressure acting on the butterfly’s phe-
nology was host availability and the butterfly and its host
plants responded to the same environmental cue, we might
expect all populations of the butterfly to exhibit the same
reaction norm with respect to temperature (i.e., show no
local adaptation) and emerge around peak flowering date.
The fact that the spatial slope is shallower than the tem-
poral slope in A. cardamines suggests that another selection
pressure may shape spatial variation in the butterfly’s phe-
nology. Perhaps spatial variation in A. cardamines flying
times is the result of a trade-off between an advantage of
emerging later to maximize host availability and an ad-
vantage of flying earlier to maximize the time available for
larval development. If this is the case, an increase in spring
temperatures may relax the selection that favors early
emergence in the north of Britain, which could increase
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mean population fitness and potentially lead to greater
success of individuals that move northward.

The temperature-mediated plasticity that the plants and
butterfly exhibit may itself be adaptive. Earlier flowering
in many plants is associated with increased pollination and
reduced seed predation (Elzinga et al. 2007), and plasticity
in the butterfly allows the population to track interannual
variation in host availability. Further evidence for adaptive
plasticity in plant phenology comes from a long-term study
in Thoreau’s woods, Massachusetts; plant species that had
a steeper slope of mean flowering phenology on inter-
annual spring temperature were found to be the least prone
to declines in abundance as temperatures have risen in
recent years (Willis et al. 2008). We did not formally test
whether there was any evidence for populations of the
plants or the butterfly species differing in their plasticity
because the standard method of detection, within-subject
mean centering and random regression (van de Pol and
Wright 2009), is anticonservative when sample sizes are
spatially heterogeneous (Phillimore et al. 2010). Visual in-
spection of figure 2G–2I, however, reveals remarkably little
intraspecific geographic variation in temporal slope esti-
mates. Thus, it is unsurprising that we found no significant
cross population correlation between the plasticity shown
by the butterfly and either host plant. As antagonistic co-
evolution can give rise to the interspecies correlation be-
tween population means being negative, positive, and ev-
erything in between (Nuismer et al. 2010), on the basis
of finding no correlation, we are able to infer little about
the contribution that coevolution has made.

Unlike the majority of associative studies exploring as-
pects of climate as a predictor of phenotype, we use daily
rather than monthly temperature data and explore the
performance of a wide range of sliding time windows. Van
de Pol and Cockburn (2011) identify two drawbacks of
an associative model approach using sliding time windows:
(i) that each day is allowed to contribute equally and (ii)
that the start point and the end point are often constrained
to when months begin and end. Our approach of using
daily temperature data addresses only the latter of these
two concerns. Nonetheless, the high explanatory power of
our models (as measured by pseudo-R2) was encouraging.
Our sliding time window approach also revealed that slope
estimates were sensitive to the position and duration of
the time window, as has also been shown for the first egg
dates of Parus major (Husby et al. 2010). For instance, we
estimated the temporal slope of flowering time on average
temperature during the period from day 46 to day 95 in
A. petiolata to be �5.72, whereas if we had considered the
period from day 56 to day 85, which corresponds ap-
proximately to March, the slope is estimated as �4.12.
Harrington et al. (1999) used March temperatures to pre-
dict the phenology of A. petiolata and identified a nonlin-

ear relationship, flattening at high and low March average
temperatures. However, over the longer period that we
identify as most predictive, we see no evidence for non-
linearity. Troubling from a biological, if not statistical, per-
spective is our finding that the best-predicting time win-
dow overlaps with the distribution of first phenological
events. How can phenological events occur before the pu-
tative cue? One possibility is that because temperatures are
highly correlated from one day to the next, when tem-
peratures in the early part of the time window are espe-
cially warm, then temperature averaged over the entire
time window may be, to a large degree, predestined. In
such years, it is possible that a shorter time period may
act as the cue.

As discussed elsewhere (van de Pol and Wright 2009;
Phillimore et al. 2010), a corollary of the slope of phe-
nology on temperature differing over time and space is
that analyses of spatiotemporal data that do not take this
into account will be biased toward estimating an inter-
mediate slope. Based on our findings, we suggest it would
be acceptable to apply space-for-time substitution to
model the response of phenology to temperature in C.
pratensis and A. petiolata but not for A. cardamines.

Summary

The interactions between the three species considered in
our study are often cited as being unlikely to be disrupted
by climate change (Sparks and Yates 1997; Harrington et
al. 1999); we find no evidence to contradict this conclu-
sion. In particular, our findings that the phenology of all
three species correlated with temperatures in an overlap-
ping time window and exhibited similar plasticity imply
that an increase in temperature will affect all three species
in a similar way. In addition, the tendency for Alliaria
petiolata to flower earlier than Cardamine pratensis widens
the window over which suitable flower heads are available
to the butterfly and may serve to buffer small differences
in plasticity between the butterfly and its hosts. We only
find evidence for local adaptation in the butterfly, and it
appears more likely that this is driven by constraints placed
by a colder climate in the north rather than adaptation to
the host plants. We detect no convincing evidence for
coadaptation between plant and herbivore. Although it
remains possible that the similar mean plasticity shown
by these species was itself shaped by coadaptation, we note
that there is little hint of different populations showing
different reaction norms or a correlation between geo-
graphic variation in the reaction norm of the butterfly and
plants, as might be expected if coevolution had played a
dominant role in determining phenology.
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Merilä, J. 2012. Evolution in response to climate change: in pursuit
of the missing evidence. Bioessays 34:811–818.

Metcalf, C., and T. Mitchell-Olds. 2009. Life history in a model
system: opening the black box with Arabidopsis thaliana. Ecology
Letters 12:593–600.

Miller-Rushing, A. J., and R. B. Primack. 2008. Global warming and



000 The American Naturalist

flowering times in Thoreau’s Concord: a community perspective.
Ecology 89:332–341.

Moussus, J.-P., R. Juillard, and F. Jiguet. 2010. Featuring 10 phe-
nological estimators using simulated data. Methods in Ecology and
Evolution 1:140–150.

Nakagawa, S., and R. P. Freckleton. 2008. Missing inaction: the dan-
gers of ignoring missing data. Trends in Ecology & Evolution 23:
592–596.

Nuismer, S. L., R. Gomulkiewicz, and B. J. Ridenhour. 2010. When
is correlation coevolution? American Naturalist 175:525–537.

Ozgul, A., S. Tuljapurkar, T. G. Benton, J. M. Pemberton, T. H.
Clutton-Brock, and T. Coulson. 2009. The dynamics of phenotypic
change and the shrinking sheep of St. Kilda. Science 325:464–467.

Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of
climate change impacts across natural systems. Nature 421:37–42.

Pelini, S. L., J. D. K. Dzurisin, K. M. Prior, C. M. Williams, T. D.
Marsico, B. J. Sinclair, and J. J. Hellmann. 2009. Translocation
experiments with butterflies reveal limits to enhancement of pole-
ward populations under climate change. Proceedings of the Na-
tional Academy of Sciences of the USA 106:11160–11165.

Perry, M., D. Hollis, and M. Elms. 2009. The generation of daily
gridded datasets of temperature and rainfall for the UK. Climate
memorandum no. 24. National Climate Information Centre, Met
Office, Devon, UK.

Phillimore, A. B., J. D. Hadfield, O. R. Jones, and R. J. Smithers.
2010. Differences in spawning date between populations of com-
mon frog reveal local adaptation. Proceedings of the National
Academy of Sciences of the USA 107:8292–8297.

R Development Core Team. 2011. R: a language and environment
for statistical computing. R Foundation for Statistical Computing,
Vienna. http://www.R-project.org.

Roy, D. B., and J. Asher. 2003. Spatial trends in the sighting dates
of British butterflies. International Journal of Biometeorology 47:
188–192.

Roy, D. B., and T. H. Sparks. 2000. Phenology of British butterflies
and climate change. Global Change Biology 6:407–416.

Sparks, T. H., and T. J. Yates. 1997. The effect of spring temperature
on the appearance dates of British butterflies 1883–1993. Ecog-
raphy 20:368–374.

Stenseth, N. C., and A. Mysterud. 2002. Climate, changing phenology,
and other life history traits: nonlinearity and match-mismatch to
the environment. Proceedings of the National Academy of Sciences
of the USA 99:13379–13381.

Stone, G. N., S. Nee, and J. Felsenstein. 2011. Controlling for non-
independence in comparative analysis of patterns across popula-
tions within species. Philosophical Transactions of the Royal So-
ciety B: Biological Sciences 366:1410–1424.

van de Pol, M., and A. Cockburn. 2011. Identifying the critical cli-
matic window that affects trait expression. American Naturalist
177:698–707.

van de Pol, M., H. L. Osmond, and A. Cockburn. 2012. Fluctuations
in population composition dampen the impact of phenotypic plas-
ticity on trait dynamics in superb fairy-wrens. Journal of Animal
Ecology 81:411–422.

van de Pol, M., and J. Wright. 2009. A simple method for distin-
guishing within- versus between-subject effects using mixed mod-
els. Animal Behaviour 77:753–758.

Visser, M. E. 2008. Keeping up with a warming world; assessing the
rate of adaptation to climate change. Proceedings of the Royal
Society B: Biological Sciences 275:649–659.

Visser, M. E., C. Both, and M. M. Lambrechts. 2004. Global climate
change leads to mistimed avian reproduction. Advances in Eco-
logical Research 35:89–110.

Wiklund, C., and C. Ahrberg. 1978. Host plants, nectar source plant,
and habitat selection of males and females of Anthocharis carda-
mines (Lepidoptera). Oikos 31:169–183.

Wilczek, A. M., L. T. Burghardt, A. R. Cobb, M. D. Cooper, S. M.
Welch, and J. Schmitt. 2010. Genetic and physiological bases for
phenological responses to current and predicted climates. Philo-
sophical Transactions of the Royal Society B: Biological Sciences
365:3129–3147.

Willis, C. G., B. Ruhfel, R. B. Primack, A. J. Miller-Rushing, and C.
C. Davis. 2008. Phylogenetic patterns of species loss in Thoreau’s
woods are driven by climate change. Proceedings of the National
Academy of Sciences of the USA 105:17029–17033.

Associate Editor: Benjamin M. Bolker
Editor: Mark A. McPeek

Male orange-tip butterfly visiting a cuckoo flower. Photo by WTPL/Richard Becker.

http://www.R-project.org

