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In this study we formulate a theoretical approach, based on a Boltzmann-like kinetic equation, to describe pattern
formation in two-dimensional mixtures of microtubular filaments and molecular motors. Following the previous
work by Aranson and Tsimring [Phys. Rev. E 74, 031915 (2006)] we model the motor-induced reorientation of
microtubules as collision rules, and devise a semianalytical method to calculate the corresponding interaction
integrals. This procedure yields an infinite hierarchy of kinetic equations that we terminate by employing a
well-established closure strategy, developed in the pattern-formation community and based on a power-counting

argument. We thus arrive at a closed set of coupled equations for slowly varying local density and orientation of
the microtubules, and study its behavior by performing a linear stability analysis and direct numerical simulations.
By comparing our method with the work of Aranson and Tsimring, we assess the validity of the assumptions
required to derive their and our theories. We demonstrate that our approximation-free evaluation of the interaction

integrals and our choice of a systematic closure strategy result in a rather different dynamical behavior than was
previously reported. Based on our theory, we discuss the ensuing phase diagram and the patterns observed.
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I. INTRODUCTION

Self-organization of mixtures of biological polymers and
molecular motors provides a fascinating manifestation of
active matter [1,2]. Microtubules are actively reoriented by the
molecular motors, and can form far-from-equilibrium global,
cell-scale structures, such as the mitotic spindle apparatus [3].
It is believed that different motor types favor formation of
distinct patterns: microtubule-sliding motors organize antipar-
allel bundles, while clustering motors control the formation of
spindle poles and asters [3,4].

Despite steady advance in the experimental analysis of such
systems [5—12], their theoretical description is stymied by the
paucity of approaches able to connect individual microscopic
motor-induced interactions of filaments to the macroscopic
dynamics at length scales relevant to the whole cytoskeleton.
Here we build on a kinetic method developed earlier in [13,14]
to provide a revised version of the hydrodynamic equations that
govern collective behavior of microtubules in the presence of
clustering motors.

Microtubules are long and stiff rodlike biopolymers [15].
Because of the asymmetry of the constituting tubulin subunits,
the microtubule filament has intrinsic orientation and distinct
ends denoted as “—"" and “4-". Molecular motors use chemical
energy stored as ATP to move processively along microtubule
filaments in one preferred direction. Some motors can bind
two filaments simultaneously and, therefore, reorient and
translocate them with respect to each other [15,16]. The activity
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of such bivalent motors generates global order on a scale which
is much larger than the length of a single filament.

Spontaneous transitions to various ordered states and pat-
terns has been extensively studied in several in vitro exper-
iments with cell extracts [11,17] and in the reconstituted
systems containing mixtures of stabilized microtubules and
purified motors. The latter systems recapitulate formation of
structures with nematic [8,9] or polar order, e.g., asters and
vortices [5-7]. This type of system is considered further in the
current contribution.

Multiple approaches had been developed to advance our
understanding of the dynamics typical of microtubule-motor
mixtures. Besides direct agent-based simulations [6,18], mean
field equations have been derived first on the basis of symmetry
considerations [19], and then from the detailed microscopic
rules of interaction [14,20-22].

In the kinetic approach employed by Aranson and Tsimring
[13,14,23], pairwise motor-mediated interactions of micro-
tubules were treated as instantaneous collisions. These authors
considered plus-directed clustering motors, which can align
and bundle microtubules. Hydrodynamic equations for the two
field variables, filament concentration and orientation, were de-
rived by coarse-graining of the corresponding Boltzmann-type
equation for the probability distribution function (PDF). Their
model successfully recapitulated such phenomena as sponta-
neous ordering, density instability (which was referred to as a
bundling instability), and formation of asters and vortices.

In this paper we revisit this technique. We demonstrate
that using the exact form of the collision rate function,
instead of the phenomenological expression suggested in [14],
yields the system of equations with a significantly distinct
“phase diagram.” Specifically, we find that in our model
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instabilities occur in a different order. We also argue that
the previously neglected excluded volume effect needs to be
considered to prevent density blow-up in the density-instability
regime. Additionally, we compare the closure of the equation
expansion considered in [14] with the more conventional
method, which is historically used in Landau-Ginzburg-like
equations [24]. The latter approach necessitates introduction
of an additional variable, the nematic order parameter or Q
tensor. The introduction of this additional field variable results
in a novel instability, not observed in the previous work.

The paper is organized as follows. Our kinetic model is
introduced in Sec. II. In Sec. III we rederive the hydrodynamic
equations obtained in [14] and critically discuss the approxi-
mations used in this derivation. We demonstrate that the model
exhibits a density instability and argue for the need to include
excluded volume effects. Section IV presents the derivation of
such excluded volume terms. In Sec. V we discuss evaluation of
the interaction integrals. Our equations of motion are presented
in Sec. VI: these are derived according to two different types
of closure. We perform stability analysis of the equations of
motion corresponding to both of these closure schemes, present
the corresponding phase diagrams, and provide the results of
numerical simulations in Sec. VII. Finally, Sec. VIII contains
a discussion of our results.

II. KINETIC THEORY

A. The Boltzmann-like Kinetic equation

The setup of our problem follows that of [14]. We consider
a two-dimensional collection of microtubules, which we treat
as slender rigid rods of length L. Since microtubules are polar
objects, we describe their local orientation by a vector n that
points from the “minus” to the “plus” end of a microtubule. We
introduce a Cartesian coordinate system (x, y), and parametrize
the orientation vector by a single angle, i.e., n = (cos ¢, sin ¢).
To describe spatial and orientational inhomogeneities in the
system, we introduce the probability distribution function
P(r,¢,t), defined in the usual way: P(r,¢,t)drd¢ gives the
number of microtubules in a small volume of the phase space
drd¢ which are at position r and possess an orientation given
by ¢ at time . Since potentially multiple microtubules can be
found in the same point of the phase space, in the following we
refer to microtubule bundles rather than single microtubules.

Following [14], the time evolution of the probability distri-
bution function is assumed to be governed by a Boltzmann-like
kinetic equation,

3 P(r,¢)
= D,8;P(r,¢) + V;D;;V; P(r,$)

n /d.s/” dw[W(r—%,¢—§;r+§,¢+§>
& w & w
X P(I‘—z,d)—E)P(r-i-z,d)-i-E)

- Wr.g;r—§.¢ —0)P(r,¢)P(r —§,¢ — w)}, (D

where V; = 9/9x;, x; are the Cartesian components of r, and
we use the Einstein summation convention; from now on we

FIG. 1. Collision rule employed in Eq. (1). Two colliding micro-
tubular bundles are reoriented by the action of the molecular motors to
assume a common orientation along the bisector of the original angle
between them. Their center of mass does not move in the process.

suppress the explicit time dependence of P for brevity. The
first two terms in Eq. (1) describe thermal rotational and trans-
lational diffusion of individual microtubule bundles, while the
last two terms represent motor-mediated interactions between
microtubule bundles. The first integral in Eq. (1) is a gain term,
which accounts for events where two microtubule bundles with
different positions and orientations are reoriented by the motors
to assume position and orientation (r,¢). The specific form
of this term encodes our assumptions about how motors and
microtubules interact; the details of such interactions are sum-
marized in Fig. 1. Again following [14], we assume that after a
reorientation event both bundles align along the bisector of the
original angle between them, while their center of mass does
not move in the process. To motivate the latter choice we note
that a motor simultaneously attached to both bundles applies a
pair of equal and opposite forces to the system; i.e., it behaves
as a force dipole. Since the total force applied to the center of
mass is zero, its position is conserved. This assumption is in
contrast with the work reported in [1,20,21,25] where it was
instead argued that directed motion of molecular motors along
the microtubules can create a flow in the surrounding fluid that
would result in microtubule self-propulsion, and hence, the
position of the center of mass of two bundles can change during
an interaction event. Such effects are rather difficult to quantify
in dense suspensions of microtubules that are confined close to
a boundary, as is typically the case in experiments; hence we
neglect them here. The second integral in Eq. (1) is a loss term,
describing the process by which a bundle with the position and
orientation (r,¢) leaves that configuration due to an interaction
event with another bundle. The rate of both motor-induced pro-
cesses is given by the function W discussed below. We would
like to stress here that modeling motor-mediated interactions
between microtubular bundles as collisions in Eq. (1) implicitly
assumes that the time scale associated with the dynamics of
individual motors is significantly shorter than the reorientation
time scale of the bundles.

It is finally important to underscore that the pairwise nature
of the interaction terms in Eq. (1) is not related to a dilute-
limit assumption, as is often the case in Boltzmann-like kinetic
theories, but rather stems from the fact that a molecular motor
can only simultaneously attach to two microtubules [15,26].

B. Long-wavelength expansion

To proceed, we observe that without loss of generality the
probability distribution function can be expanded in Fourier
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harmonics,
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P(rg)= Y Pur)e™, )

n=—00

where P*, (r) = P,(r), since P is real, and “x” denotes com-
plex conjugation. Next, we note that motor-mediated interac-
tions between microtubules are short-ranged, and the integrand
in Eq. (1) is nonzero only when |&| < L, independently of the
particular form of the interaction strength W. Therefore, to
proceed, we approximate the true spatial evolution of P by its
gradient expansion, focusing on hydrodynamic fields varying
slowly on scales comparable to L. Keeping terms up to fourth
order in spatial gradients and projecting the resulting equation
on the sth Fourier harmonic yields the following equation,
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In Eq. (3) all P,’s and P,’s are functions of r and ¢. The
interaction integrals are given by

T
[’522 — el(n+m)¢/d5/ dw W]ez(m—n)%’
-
1 . T .
Ii(,n)m — el(n+m)¢/d5/ dow Wlez(m—n)igi’
-

b
2 i i(m=m)3
I3, = eltme / dé / do Wie' "3 gt
-7

T
Ii(j3k),nm :ei("er)d’/d’;'/ dw Wlei(min)%i:gfjé:k,
—1T
4 . 7 : (2}
Ii(jlzl,nm = el(”+m)¢/d§/ do Wlel(min)igigjé:kgl’ o)
-7
and

T
JO = (itrtme f dé / dow Wre ",
-7

T
Ji(,]n)m Zei(n+m)¢/d§/ do Wae Mg,

I3, = eltme / dé / do Wae Mg E;, (6)
-
T3 = €M / dE / do Wae M EE ik,

T
4 A »
Jif/'k)[,nm — i tme / d§ / dw Wye lmwfiéj";:kéls
—7T
where &; are the Cartesian components of &, and we introduced

§ w & w
PR R R 5>’
W2 = W(rv¢;r - E’(p _(1))

Equation (3) comprises an infinite hierarchy of equations for
the Fourier harmonics P,(r,?). Its practical application relies
on a strategy to reduce the number of relevant fields to just a
few harmonics, and on the ability to calculate the interaction
integrals for a particular function W. Our approach to both of
these issues is discussed below in Secs. VIA and VIB and in
Sec. I D, respectively.

W] = W(I‘—

C. Diffusion terms

The diffusion coefficients in Eq. (1) are approximated by
their values for a single rod of length L and diameter d moving
in an infinite, three-dimensional fluid with viscosity n [27]:

p, = 12581 | (L/d) (7)
" UL n(L/
and
D;j = Dyni(@)n (@) + D1 [8;; — ni(d)n;(@)], ®)
where
kT
D, = 4;% In(L/d), Dy =2D,.

Here, T is the temperature of the solution, and kg is the
Boltzmann constant. Note that D, is four times larger than the
value given by Doi and Edwards [27] due to the difference in
our choice of the angular variable (i.e., ¢ rather than n). Using
Eq. (8) in Eq. (3) and projecting onto the sth Fourier harmonics
leads to the following contributions to the equations of motion:

Dy + D
3 Py(r) = — s>D, Py(r) + %VzPs(r)
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where “---” denotes contributions from the interaction inte-
grals discussed below.

Formally, Eqgs. (7) and (8) limit the scope of Eq. (3) to rather
dilute suspensions far away from liquid-solid or liquid-liquid
boundaries, while both assumptions are routinely violated in
experiments [2,9,28,29]. As we will see below, the kinetic
theory equations that we are going to derive will only depend on
the ratios Dy /D, and D /D, that are less sensitive to the local
density of other microtubules and proximity of a boundary. We
note, however, that a proper study of this effect is outside the
scope of this work.

D. Interaction kernel W

Within our kinetic theory, molecular details of motor-
microtubule interactions are encoded at a coarse-grained level
in the interaction function W. Its physical interpretation is
given by Eq. (1), which identifies W(r|,¢,;1r2,¢,) as a rate
at which two microtubular bundles at (r;,¢;) and (rz,¢»)
are displaced and reoriented by molecular motors. These
changes in the bundles’ positions and orientations occur when
amolecular motor is attached to both bundles and moves along
them. Therefore, a motor-induced reorientation event can only
take place when the shortest distance between the bundles is not
larger than the size of the motors. Since the latter is significantly
smaller than the length of individual microtubules or the typical
size of the patterns formed by the suspension, see, e.g., [9,15],
we consider motors to be pointlike. Under this assumption, W
is nonzero only when the bundles intersect in their original
configuration. In turn, this implies that in real systems one of
the bundles leaves the xy plane of the suspension and deviates
slightly into the third dimension. Such deviations are small
compared to either L or the typical pattern size; hence we
will treat such bundles as intersecting in 2D. The intersection
condition can be written as

L L
r+n-7 =r+mn-1n, (10)
2 2
where the left- and right-hand side of this equation is the
position of the intersection point written with respect to the
center of mass (middle point) of either the first or the second
bundle, i.e., r; or rp. The microtubule orientation is given
by n; = (cos ¢;, sin¢;), i = 1,2. Here we have introduced
the dimensionless contour lengths 7;, that parametrize the
position along each microtubule: T = —1 corresponds to the
minus end, and T = 1 to the plus end of the microtubule. By
taking the cross product of Eq. (10) with either n; or n,, the
contour-length parameters can be found to be

_2[r—r) xm]-e

, (1)

L (mxm)-e,

2 [ —rp) xmy]-e

= , (12)

L (Il] X n2) - €;

where e, is a unit vector perpendicular to the xy plane. Since
|71.2| should be smaller than unity, the intersection condition
can equivalently be written as &1 — |71|)&(1 — |12]) # O,
where © is the Heaviside step function.

Having established the condition for bundle intersection, we
turn to modeling their re-orientation rate. Following Aranson

m(7)
—

m_

I 1 T
|

—1 0 70 1

FIG. 2. Model anisotropic distribution of the molecular motors
along a microtubular filament.

and Tsimring [14], we take this rate to be proportional to the lo-
cal motor density at the intersection point. In the following we
assume that the motors are abundant in the solution, and their
dynamics of association/dissociation with the microtubules are
much faster than the typical pattern-formation time. This was
the case in several in vitro experiments (see [6], for example).

With these assumptions, the motor distribution along in-
dividual microtubules instantaneously reaches its equilibrium
profile. For plus-directed motors and under similar conditions,
the equilibrium motor distribution was measured experimen-
tally [30,31], and it was shown that the motor density stays
low and approximately constant in the vicinity of the minus
end of the microtubules, until it rises sharply and saturates at
another constant value close to the plus end. This behavior
is corroborated by 1D nonequilibrium models [14,30-32] that
relate this distribution to the formation of traffic jams at the plus
end. The equilibrium motor distribution m(t), which gives the
motor density at the contour length position t, can therefore
be approximated by

m(t) =m_ 4 (my —m_)O(r — 1), 13)

where m_ and m ;. are the motor densities at the minus and plus
ends, correspondingly, and ty sets the position of the transition
between those values; see Fig. 2 for details.

The reorientation rate can finally be written as

W(ry,¢1:12.42) = GO — [1,)O( — |r2])
x {1+ E[O(11 — 70) + O(12 — 1)1},
(14)

where E = (my —m_)/(2m_), and 1, , are given by Egs. (11)
and (12). The constant G is proportional to the motor proper-
ties, such as its processivity along the microtubules [15,16], and
varies with the motor type. However, as we will demonstrate
below, G can be removed from the model by a rescaling of
the dynamical fields. While its value would be important to
map the parameter values used in the equations of motion
back to dimensional units, it plays no role in determining the
phase diagram of our model. Indeed, the interaction function
W depends on two dimensionless parameters, 7o and E, where
the latter quantifies the mismatch between the motor densities
at the two ends of a microtubule. While it would be tempting to
ignore this complexity and set & = 0 for simplicity, previous
work suggests this to be a crucial ingredient of the theory. As
was shown by Aranson and Tsimring [14] for their model, there
is no interesting pattern formation taking place in the absence
of the motor density mismatch, and only a trivial instability
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is present in that case (see below). A similar conclusion was
reached by Marchetti, Liverpool, and co-workers [1,20,21,25],
where the analogous parameter was the motor speed anisotropy
along a microtubule. We, therefore, consider & # 0 below.

III. APPROXIMATIONS IN THE
ARANSON-TSIMRING THEORY

In this section we review the approximations used by
Aranson and Tsimring in [14] to evaluate the integrals in
Egs. (5) and (6), and to terminate the infinite hierarchy of
coupled equations in Eq. (3). Here, we sketch their argument
in some detail as it will be important in the further discussion.

The first step involves replacing the exact interaction kernel
W in Eq. (14) with an effective simplified kernel, which is
given by

(- 1'2)2>

G
War(ri,¢1:12,¢2) = == exp ( %

b*m
B
X |:1 - Z(r] —1) - (N —nz)], (15)

where b ~ L is a length scale, and G is a motor-related
constant, similar to G in Eq. (14). This expression replaces the
complicated spatial and angular dependence of Eq. (14) with
a Gaussian cutoff that, essentially, allows any interactions as
long as the bundle centers of mass are separated by a typical
distance set by b; the term in the brackets can be seen as the first
terms of the Fourier expansion of the true angular dependence
in Eq. (14). The parameter § is a measure of how anisotropic
the motor distribution is along individual microtubules, and
is analogous to E in Eq. (14). The obvious benefit of this
approximation is that the integrals in Egs. (5) and (6) can
now be evaluated analytically. In [14] it is claimed that while
not exact, Eq. (15) retains the main features of Eq. (14). We
demonstrate in the next sections that together with the choice
of the parameter » made in [14], the approximation in Eq. (15)
leads to a different phase diagram with respect to that obtained
when the original kernel Eq. (14) is retained.

The second approximation developed in [14] concerns
the way to terminate the infinite hierarchy in Eq. (3). To
illustrate this strategy, we neglect spatial variations of the
probability distribution and keep only its angular dependence.
This approximation implies that the dominant mechanism of
the instability in this system should be the appearance of
orientational order, while the density fluctuations are assumed
to be subdominant. The validity of this approximation will
be reassessed after the same methodology is applied to the
full system of equations with both the spatial and angular
dependencies included. Using Eq. (15) in Eq. (3), and setting
B and the spatial gradients to zero, we obtain

8, P, = —s*D, P, — 21 G Py P,

oo

- 4sinZ(2m — s
+G¢ Y 4sin3C@m =9 b (16)

2m — s
m=—0oQ

Keeping only the first three Fourier harmonics in the expansion,
this system of equations reads

9 Py =0, a7)

%P1 =—D,Pi+GB8—2m)P P — 8GP}P,,  (18)

& P, = —4D, P, + 2 G(P] — PyPy), (19)

where the first equation is the direct consequence of the
total probability conservation. The isotropic solution of these
equations is given by P, = P, = 0, while the evolution of
small perturbations around this state, §p; and §p,, is governed
by the following equations,

0,6p1 = A18p1, 9;6p2 = A2bpa, (20)

whereA; = —D, + G(8 — 2n)Pyand A, = —4D, — 2 G Py;
here, Py is a constant. The isotropic solution becomes unstable
with respect to perturbations §p; when A; becomes positive,
while perturbations in the second mode, §p,, are decaying
since A, is always negative. Therefore, close to the instability
threshold the dynamics of the second mode P; is enslaved to
the dynamics of the linearly unstable field P; [24], and P, can
only acquire a nonzero value due to the nonlinear forcing by
the P{ term in Eq. (19). Thus, P, quickly relaxes to the value
set by the right-hand side of Eq. (19),

271G )
- T p2 @1
4D, + 272G P,

As can be shown from Eq. (16), the same holds for all higher
modes P, with m > 1, where P, ~ O(P["). Since close to
the instability threshold the saturated value of P; is small,
all higher harmonics are significantly smaller, and can be
neglected. Therefore, the authors of Ref. [14] restricted the
infinite hierarchy Eq. (3) to contain only the first three modes,
Py, P;, and P,, where the latter does not possess its own
dynamics but is assumed to be well approximated by the
adiabatically adjusted value given in Eq. (21), even in the
presence of spatial variations and nonzero f.

These approximations allow for Eq. (3) to be converted into
a system of partial differential equations for the hydrodynamic
(i.e., slowly varying) fields p(r) and p(r) defined by the
moments of P(r,¢) as follows,

P

2
,0(1‘)=/0 d¢ P(r,¢) = 21 Py(r), (22)

1 2
Py = 5 / dé n($)P(r.)
T Jo

_ (P1(l') + P1(l')’ P_y(r) - Pl(r)>. 23)
2 2i

Here, p(r) is the local density of microtubular bundles, and
p(r) is proportional to their local orientation; note that p is not
a unit vector.

To render equations dimensionless, time, space, and the
slow fields p and p are scaled by Dr’l, L, and GLZ/D,,
respectively. The final dimensionless equations used in [14]
read

P B?p? wB’H 2 )
dp=V=——— |~ 3V (pVip — pV
7Y [32 T ] T (PVip —pV7p)
7/)034 4
+ 20;(3;p0;pi — 3ipd;p;) | — 756 Vip, (24)
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P =155 p+ %6 (V-p)+(o/p P olpl’P

_H|:V_'02_< —§)p(V- )_§( -V):|
lor \" 73 P)=3p- VP
+ ——V?p, (25)

where pg is the conserved average density, B =b/L, H =
BB?, and p; = m/(4 — 1); the constant Ao = 167 /[3(po +
4)] and the corresponding term in Eq. (25) arise from the
dimensionless version of Eq. (21).

In addition to the approximations developed above,
Egs. (24) and (25) entail some additional assumptions. First,
the only nonlinear terms (i.e., terms proportional to H) kept in
these equations correspond to the lowest order nonzero terms
in the gradient expansion (cubic and linear in gradients in the
equations for p and p, respectively). This is done to ensure
that both equations are coupled to each other. Additionally,
Eq. (25) contains a series of terms quadratic in the gradient
that are linearized around py, giving rise to the last term in
that equation. This linearization is justified if there are only
small density variations close to the instability threshold.
Finally, to ensure the absence of short-wavelength instability,
the fourth-order terms in the gradient expansion are again
linearized around py to yield the biharmonic term in Eq. (24).

The analysis presented in the Aranson-Tsimring theory sug-
gests that Egs. (24) and (25) exhibit two linear instabilities: an
isotropic-polar transition at pg = p., where the system acquires
a global polarization p(r) = constant, while p(r) = pg, and the
density transition at py = pp = 1/ (4B?) with p(r) = 0, where
the linearized diffusion-like term in Eq. (24) becomes negative
indicating the tendency of the system to accumulate disordered
microtubular bundles in localized clusters; both instabilities
are long wavelength and set in at the scale of the system
size. Note that in their original paper, Aranson and Tsimring
referred to the instability that sets in at g, as a bundling
transition, which, in our opinion, implicitly implies not only
a local increase in the bundle density but also the appearance
of the local orientation p. This would be inconsistent with the
nature of the instability and, following Ziebert et al. [23], we
refer to it as a density transition throughout this paper. By
setting B such that g, < pp, Aranson and Tsimring could show
numerically that for 5. < po < g, Egs. (24) and (25) exhibit
a disordered quasi-steady-state array of vortex and asterlike
structures, dominated by vortices, at low H, and by asters, at
larger H. For py > pj, there is a competition between vortices,
asters, and disordered high-density clusters at high values of H.

Below we systematically examine the assumptions leading
to Eqgs. (24) and (25). First, we devise a semianalytical strategy
to evaluate the integrals in Eq. (3) with the exact interaction
kernel Eq. (14) instead of the effective approximation Eq. (15).
We will demonstrate that, as a result, the density transition sets
in at a lower density than the instability towards a globally
ordered state, substantially changing the phase diagram. This
can already be seen from comparing Eq. (15) with Eq. (14):
since L is the only length scale that appears in the true interac-
tion kernel, the parameter b of the approximate kernel should
only differ from L by a factor of order unity, which implies
Pp = 1/4 < p.. Next we note that the terms that appear in

Egs. (24) and (25) were selected on the basis of approximations
whose validity is difficult to control a priori; as a result,
close to the instability threshold the final equations combine
terms which effectively are of different orders. We show how
to systematically keep terms of the same order and that this
requires modification of the closure given by Eq. (21). Finally,
we observe that in the absence of anisotropy in the interaction
kernel, i.e., H = 0, Eq. (24) exhibits pathological behavior for
po > Pp, since there are no nonlinear terms that can cut off
exponential growth of the linearly unstable modes. The same
problem persists at small values of H, while at large H the
nonlinear coupling to the polarization field limits the instability
growth, as shown in [14]. To cure this problem, which is more
severe when g, < P, here we explicitly account for excluded
volume interactions between the microtubular bundles that sta-
bilize the dynamics even in the absence of the polarization field.

IV. EXCLUDED VOLUME INTERACTIONS

In this section, we incorporate the excluded volume interac-
tions between microtubular bundles into the dynamic equation
for the density. To do so, we start from the Smoluchowski
equation, similarly to the work by Ahmadi ef al. [21] and
Baskaran and Marchetti [33], and then incorporate these
terms into the dynamical equations that we derived from the
Boltzmann-like Eq. (1). Another approach is to introduce the
excluded volume interactions directly in the Boltzmann-like
equation [34], but this is more cumbersome. Formally, the two
approaches are expected to be equivalent, but note their detailed
comparison by Bertin et al. [34].

We begin by introducing the Onsager free energy [35-37]
for a collection of solid rods in terms of irreducible integrals
[38]:

F
kgT

_ / dr / d¢ P(r.$)[In A2P(r.¢) — 1]
1
-3 f drdr’ / dode' P(r,p)P(x',¢") f(r,¢; v ,¢")

- é / drdr dr’ / d¢dg'dd” P(r,¢)P(x',¢)P(x",¢")

X f(rv(p; r',¢/)f(r,¢;r”,¢”)f(r/,¢/;r”,¢”) + e
(26)

Here, P is the probability distribution function, as in
Sec. II, A is the thermal de Broglie wavelength, and
f=exp(=U/kgT)—1 is the Mayer function. The
interaction potential U between two microtubular bundles is
infinite, when the bundles cross, and zero otherwise. In the
absence of any external driving, the equilibrium probability
distribution is given by [27]

b il Al d do P =0 27
aP(r,¢>[kB_T_ / r/ ¢ (r"”)}_ @D

where /6 P(r,¢) denotes a functional derivative with respect
to P(r,¢), and we have introduced a Lagrange multiplier A to
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ensure that P(r,¢) satisfies the normalization condition

[ ar [ o= (8)
The solution to this equation can formally be written as
UQC ’
P(r,¢) = const. x exp —M , 29)
kgT

where the self-consistent potential U is a functional of the
probability distribution function,

LD~ [ax [ a0pwo)rapir o)
kT
B %/ drdr / dg'd¢" P(x'.¢)P(r' ")

x f(r,p;x',¢") f(r,p;x",¢") f(x',0"sx",¢")
4o, (30)

and the constant is determined from the normalization condi-
tion, Eq. (28). The two terms in Eq. (30) are the second and
third irreducible integrals [38] that correspond to two-bundle
and three-bundle interactions, respectively. As was shown by
Ahmadi et al. [21], the first term leads to a contribution to the
density equation proportional to V2 p2. When added to Eq. (24),
for example, this contribution can limit the growth of the
density fluctuations only for certain values of the parameter B,
and in order to avoid this restriction we also include the three-
bundle term in Eq. (30), which, as we show below, leads to a
contribution proportional to V2p? and provides a stabilization
mechanism for any density and any values of the parameters.

To evaluate the first integral in Eq. (30) we observe that the
Mayer function f(r,¢;r’,¢’) is only nonzero when a bundle
at r’ with an orientation given by ¢’ intersects the test bundle
at r with an orientation given by ¢, and in that case f = —1.
The first integral, therefore, reduces to

/ ar / 4 P ), 31)

integrated over intersecting configurations only. To enumerate
such configurations, we use the contour variables introduced
in Eq. (10), and write the condition of two bundles intersecting
on a plane as

L / ! ’ L /
r—i—n(q&)gr:r +n(¢)§t, (32)

where t and t’ are the dimensionless positions of the inter-
section point along the corresponding bundle; see discussion

J

after Eq. (10) for details. When the bundles intersect, Eq. (32)
can be used to change integration variables from r’ to r and 7/,
yielding

L2 1 2 L
- / drdt’ f d¢’P<r + —[n(¢)r — n/(¢’)r’],¢/)
4 J, 0 2

[n(¢) x n'(¢"]], (33)

where the last factor comes from the Jacobian of the trans-
formation of variables. To proceed, we use the Fourier ex-
pansion of the probability density function, Eq. (2), in the
integral above, and note, as before, that since we are in-
terested in patterns evolving on spatial scales significantly
larger than L, we can Taylor expand the Fourier modes
P,(r+ %[n(qﬁ)r —n'(¢’)t’']) in gradients of P,(r). The lead-
ing contribution to this expansion comes simply from the
zeroth-order term P,(r) and we use this approximation in this
calculation. Additionally, since we are interested in stabilizing
the dynamics of the density fluctuations, we will only keep
Py, ignoring all other Fourier harmonics, in the analysis below.
The ignored contributions from higher Fourier modes and their
spatial gradients have been discussed by Ahmadi et al. [21].
We will argue below that they are subdominant in the regime
we are interested in.

Proceeding with the approximations discussed above, the
first integral in Eq. (30) becomes

L2
L f d¢’&|z
4 J 0

x e, -

[n(¢) x n'(@")]|

27 2
_ Lz%/o d¢'|sin(¢p — ¢')| = ;L2p(l‘). (34)

In a similar fashion, the second term in Eq. (30) can be
written in terms of the dimensionless variables 7;; that denote
the position along the bundle i of its crossing with the bundle j,
where we have numbered the bundles with (r,¢), (r',¢’), and
(r”,¢"), as bundles 1, 2, and 3, respectively. The conditions of
simultaneous intersection of all three bundles is then

L / / / L
r+n(@)=tp=r +n'(@)=-1,

2 2

L 1" " " L
r+ n(¢)5113 =r" +n’'(¢ )Efm, (35)

/ ! ! L 1 " " L
r +n(¢)5r23 =r +n'(¢ )Efn

As for the two-body interaction term, we use the first two
conditions of Eq. (35) to change variables from (r’,r”) to
(t12,721,T13,731), and use the last condition to ensure that the
bundles 2 and 3 cross. This yields for the second term in
Eq. (30)

L p@N (LN (7 o .
5(—) (—)/0 d¢'dg”| sin(p — ¢)|| sin(p — ¢")|| sin(@’ — ¢")|

2m 2

1

! L
X / dtipdtodti3dt31dT3d T30 5<§{n(¢)(flz —113) + 10 (@) (123 — 121) + 0 (P )(131 — T32)})
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_ p()*L*
T 87

2
/0 de¢'de”|sin(¢ — ¢)|| sin(¢p — ¢")|| sin(¢p" — ¢")|

/ (mmnwmyCMkwwMY(
X dk
Kk - n(¢) k-n'(¢)

where we replaced the two-dimensional Dirac delta function
with its integral representation [39],

1 .
(z)Z/dkéki
T

and performed integration over 7’s. We could not find a closed
analytic form for the integral in Eq. (36), and calculated it
numerically by replacing the [—o00,00] x [—00,00] integra-
tion range for k with [- R, R] x [—R, R], with R appropriately
large, but finite. We summed up the integrand on a grid with
Aky = Aky = A¢ = 0.01 and used R = 60. Since the value
of the integral should not depend on the absolute orientation of
the first bundle, i.e., on the angle ¢, we also averaged the result
over ¢ to increase accuracy. The resulting value is numerically
very close to 273, and we will use that approximation below,
for convenience. Finally, to third order in the bundle density
the self-consistent potential becomes

Usc(ra¢) 2 2 1 4 2
—— = —L —L .
ks T - p(r) + ) p(r)

4
The first term in the equation above was calculated by Ahmadi
et al. [21], and the three-dimensional version of the second
term was discussed by Straley [40].
Diffusion of a rod in an external potential is described by
the Smoluchowski equation [21,27]

dP(r,¢)

ot
where D;; is given by Eq. (8). Using Uy for the external po-
tential, projecting onto the zeroth Fourier mode, and selecting
only the terms containing the density, we arrive at the following

contribution of the excluded volume effects to the dynamical
equation for the density

_ D“+DJ_
- 2

s(a) = (37

(38)

U
=V;D;; <VjP(l'»¢) + P(r’¢)vjkB_T)’ (39

dip VTﬁmﬁ+éﬁmﬁ)+m.(M)
While the p? term provides stabilization against the otherwise
unbounded growth of the density instability, resolving the
competition between the p? and p* terms numerically requires
fine temporal resolutions, as at large time steps the quadratic
term can still lead to a finite-time blow-up due to an insufficient
time for the qubic term to curb that growth. We, therefore, intro-
duce a further approximation that allows us to avoid working
with small time steps by resumming the virial expansion in
Eq. (40) as

L2 () + 1L () + - & L2p(r)?es 7,
where we added an infinite number of higher-order terms that
mimic the effect of the higher-order virial coefficients; their
influence is small for sufficiently small densities, and their main
function is to safeguard against very fast growth of local density
fluctuations in our numerical simulations presented below.

(41)

: 1" 2
sin[k - n"(¢ )]) ’ (36)

k- nu(¢//)

[
Finally, the contribution of the excluded volume interactions
to the density equation is written as

Dy+ D
atp — I + J_VZLZp(r)ZeéLZp(r) Foe (42)
2
where --- denote the diffusion terms from Eq. (9), and the
terms originating from the interaction integrals are discussed

next.

V. EVALUATION OF INTERACTION INTEGRALS

In this section we proceed by evaluating the interaction
integrals from Egs. (5) and (6) with the exact kernel Eq. (14). As
an example, we calculate the value of I;},zm which contains the
same technical features shared by all other interaction integrals,
whose values are given in the Supplemental Material [41].

By introducing new variables x = ¢ — ¢ and¢ = &/L, the
integral / /(lrzm can be written as

[ 1 2w ) ) 2 [}

v =GL3—/ d¢e’(”+m)¢e_”¢/ dx/ de ¢?
21 Jo 0 0
b

j.nm
in-my2 [ COS(X + @)
X /;n doWie 2 (sin(x + o) j, 43)
where
. . 1)
W, = ®<| sinw| — 2¢ | sin <X — 5)‘)
. . 1)
X ®<| sin w| — 2¢ | sin (X + E)I)
sin (x + 2
x {1 + E|:®<—2§M - ro)
sin w
sin(x — 2
+ @(—2;*M - ro>] } (a4)
sinw
Projection onto the sth Fourier harmonics yields
L7 iy cos(x + ¢)
L —is$ yi(n+m)p [ CC X d
)y ¢ C @mu+¢>j¢
eixan,sfmfl + e_ix(sn.sfm 1 /2
_( ¢ )2 ) )
(elesn,s—m—l - eilx(sn,s—m+1)/(2i) j
and the spatial components of Ij(,l,zm can be expressed as
s B(l) (Sn s—m— + B(<2) Sn s—m
I)E,lr)tm _ L’;G s,mon, 1 s,mon, +1 7
2
- ° B(l) 8n s—m—1 — B(Z) (Sn s—m
Lo = LG S (46)
i
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FIG. 3. B{'|" as a function of 7.
where

2 oo ke
Bg’l’; =G—l / dX / dé‘;z dC()W]@i(zm_SJr])%eiX,
0 0 -

2 [e9) T
Bs(z,; =G_1/ dxf dg“;z da)Wlei(zm_s_l)%e_iX
0 0 -

are functions of E and 7. The structure of Eq. (44) suggests
that each of these integrals can be split into two contributions

B (E,10) = By + B By (10), (47)

where Bff}f” is a number associated with the isotropic (i.e.,
E-independent) part of the kernel Eq. (14), while B{ ™ is a
function of 7y. We evaluate these contributions numerically, as
explained below.

We illustrate our method by calculating Bﬁ In this case,
numerical integration on a grid with A{ = Aw = Ax = 0.01
gives Bi};im = 0. We note, however, that in general the
isotropic contributions to this and other integrals are not
necessarily zero for all values of the indices. To evaluate the
anisotropic part quliani(to), we perform a similar numerical
integration for a range of 7( from the interval [—1, 1], and plot
the resulting values in Fig. 3 (solid circles). We observe that
these values are well approximated by

BIi () = 5 (1= %), 48)

as can be seen from Fig. 3 (solid line). We therefore obtain
B (E,1) = SB(1 - 13). (49)
All other integrals I’s and J’s, Egs. (5) and (6), are evaluated
in the same way. For all these integrals, the anisotropic contri-
butions are simple polynomials in 7y that are readily guessed,
while their prefactors and the isotropic contributions are well

approximated by ratios of simple integers (see Supplemental
Material [41] for details).

VI. HYDRODYNAMIC EQUATIONS

We now have all the ingredients to formulate our version
of the equations of motion for the hydrodynamic fields. As
mentioned above, our approach differs from the work of [14] in
several important ways, and we will show that this significantly
changes the phase diagram of the system. In order to be able

to attribute the changes observed to a particular aspect of our
theory, we use the following approach. First, we use our values
of the interaction integrals calculated with the exact kernel in
Eq. (3) combined with a closure strategy employed in [14];
see Eq. (21). Then we repeat the same derivation but with a
different closure devised to keep only the terms that are relevant
in the vicinity of the instability onset. In both cases we add the
excluded volume terms to the equation for the density to be able
to resolve the dynamics in the presence of a density instability,
as discussed in Sec. IV.

A. Aranson-Tsimring closure

Here, we repeat the derivation from Sec. III with our values
of the interaction integrals. The equations are rendered dimen-
sionless by scaling time, space, and the Fourier harmonics of
P by D!, L, and GL?/D,, respectively. In Eq. (3), we keep
only the first Fourier harmonics, Py, P+, and P,, butdrop any
gradient of Py,. For the second Fourier harmonics, Eq. (3) is
an algebraic equation that is solved by Pyy = Ao P37, similarly
to the closure Eq. (21), while for the density and polarization,
Egs. (22) and (23), we obtain

o (I+a3p? 1 o

3 p = V>
P [ 327

(14+as)pV*p

691207

1
— —ay[3V - (pV?p — pV?
240614[ PV o —pVp)

+ 20;(3;00; pi — 3 p3d;p;)], (50

5 1
op= — —~ V’p4+ — .
P p+ T p+ 96V(V p)

+ (+a) 2 28A||2
aj 37T/OP 15 olPI"P

Vo Ve - eVt LV D)
ap 2013 P 20[) P 24 PP

3272
£0 2 2
1 —|\V -V(V . . 51
+ ( +a3)40n< p+9 ( p)) (5D
Here,
3
Ao = r (52)
3n(14+a)™ + po
and

ar = &(1 — 1),

ay = B(1 — 1),

a3 = E[1 — (1 +15)/2], (53)
a = &1 (1 +3)/2],

as = 8[1 — (1 +12)°/2].

In Eq. (50), the term proportional to « is the dimensionless
version of the excluded volume contribution from Eq. (42),
where @ = D, /G. This quantity can be understood as a ratio
of two time scales, #,, /t,, where t,, ~ G 'isa typical time over
which a bundle changes its orientation due to the activity of
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molecular motors, while #, ~ D! is a typical reorientation
time due to rotational diffusion. In the absence of motor
activity, o becomes very large, and the excluded volume term
prevents formation of any significant density fluctuations. In
the motor-activity-dominated regime, o« is small, and this
regime is the focus of the rest of this work.

We also note that apart from the V(p - p) term and the
excluded volume contribution, Egs. (50) and (51) have the
same tensorial structure as the equations in the Aranson-
Tsimring theory, Eqs. (24) and (25). Perhaps surprisingly,
though, the differences in their dependence on the parameters
of the kernel and different numerical prefactors are sufficient
to produce a rather different phase diagram, as we discuss in
Sec. VIL

B. Self-consistent closure and Q tensor

The inherent problem of the previous closure is that it
combines terms that are of various orders (equivalently, degrees
of smallness) close to the instability threshold. Dropping
the spatial gradient in the equation for the second Fourier
harmonics of P implies that, to obtain a coupled system, the
density equation should contain third-order spatial gradients,
while only first-order terms are sufficient in the polarization
equation. To address this inconsistency, we employ a sys-
tematic procedure of deriving hydrodynamic equations that
was originally developed for Ginzburg-Landau-like amplitude
equations in pattern formation [24] and was recently applied
in the context of self-propelled rods [42,43] and microtubule-
motor mixtures [44].

Similarly to Eq. (25), Eq. (51) suggests that a uniformly
polarized state becomes stable above some p., given by
the time- and spatially independent version of Eq. (51). If
we introduce €2 = py — per, balancing the terms in Eq. (51)
implies that |p| ~ €,V ~¢€, 9, ~ €2, and the deviation of the
density p(r,t) from its average value py scales as §p(r,t) =
o(r,t) — po ~ €2. Using these scalings we can see that the
coupling terms, i.e., the terms proportional to ay4, in Eq. (50)
contain a term proportional to po VZ(V - p) ~ €*, while the rest
of the coupling terms are ~€®. Moreover, this scaling implies
that ignoring spatial gradients of P, or spatial gradients in
the equation for P, is not justified since, for example, the term
V., p; isof the same order as p; p;, used in the algebraic closure
above. Therefore, here we rederive the equation for P, keeping
all the terms that are ~e2.

To simplify the notation, we introduce the so-called Q
tensor that is proportional to the second Fourier harmonics
of P(r,?),

1 2 1
Qij(r) = ;/0 ("i”j - §3ij>P(r’¢)d¢' 54)

The two independent components of the Q tensor can be
explicitly written as follows,

0,.(r)= 22O+ P20

P_5(r) — P(r)
2 2i '

Qxy(r)= (55)

Note that Oy, = —Q,, and Q,, = Oy, since the Q tensor is
traceless and symmetric. Keeping the terms proportional to €2

in Eq. (3) for the second harmonics, we obtain

1

Qj=—7—
T+ (It ay)

[(1 +a){2pip; — (P - Pdi;}

£0
+ azm{f}ipj +9;pi — &;;(V ‘P)}i|, (56)

which, in the absence of spatial gradients, is the same as
the closure used above. Terms on the the right-hand side of
Eq. (56) have also recently been discussed by Giomi et al.
[45] in the context of rheology of active polar particles. In
a similar fashion, keeping the leading terms in €, which are
proportional to €3 and e* for the first and the zeroth harmonics,
respectively, gives us consistent equations of motion for the
hydrodynamic fields close to the global order threshold. This
system of equations exhibits both the global order and the
density instabilities but lacks terms regularizing the otherwise
unchecked growth of the latter. To deal with this problem, we
keep the nonlinear term that causes the density instability and
add the excluded volume contributions calculated in Sec. IV to
stabilize it. Moreover, we follow Aranson and Tsimring [14]
and keep the bi-Laplacian of the density term that selects the
length scale of the density instability. Finally, we arrive at the
following dynamical equations:

o (I+a)p’ 1 w
3:,0 = V2|:3—2 - ﬁ + %Olvz(pze g )
91
- 1 v4
6912071( +as)poV'p
1 L b anm |0:0,0i + —aspe VAV - p)
48 36 as)po |00 Lij 8004/00 p),
(57)
dpi = -+5v2 +1V(V )
tPi = —Di 192 Pi 96 ! Y
+(0+a) 2 28Q
ai 37_[)0171 15 ijPj

1 1 9
—a2| ——000ip — 5=pi(V -p) — =(p- V)pi
a2|:16712 podip = o5 p V-p) 20([’ )P

1 1
—Vi(p-P)+ ——podk O;
+24 (p P)+24Opo ka:|

(1 + az)po
+ 5 457

1 _, 2
—Vpi+ =ViV-p)|. (58)
8 T
This system of equations is the central result of our paper.

VII. RESULTS

In this section we present analysis of the dynamical behavior
exhibited by the models derived above. For convenience, we
will be referring to Egs. (50) and (51) as the Aranson-Tsimring-
closure (ATC) model, and to Eqgs. (57) and (58) as the Q-
tensor-closure (QC) model. First, we perform a linear stability
analysis of the homogeneous and isotropic base state for both
models and determine the regions of the parameter space where
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nontrivial behavior can be expected. Then we perform direct
numerical simulations of the ATC and QC models in these
parts of the parameter space and discuss the resulting patterns.

A. Linear stability analysis

We start by observing that both models support exact
solutions in the form of a homogeneous state with p(r,t) = po
and p(r,7) = P, as was already mentioned above. In both cases,
the evolution equation for P is given by

P =[~1++a)(skp — FAP) P (59)

where P = |P|. Trivially, P = 0 is always a solution to this
equation for any density. For densities larger than

_ 3
20 +ay)

the isotropic solution loses its stability, as Eq. (59) suggests,
and another solution sets in with

1 /15 (po ) ( Po >
P = — — -1 + 1], 61)
1 +a1 28\/ Pcr 2'pCl‘

and a random orientation selected through a spontaneous
symmetry breaking. We refer to this solution as the globally
ordered state.

The homogeneous and isotropic state with p(r,?) = py and
p(r,t) = Ois also unstable with respect to density fluctuations,
as was already mentioned above; there, it was referred to as
a density instability. Assuming small spatial variations of the
density profile p(r,?) = py + 8p(t)e!®*+%:¥) and the absence
of polarization fluctuations, the linear dynamics of the density
perturbations are given by 9,6p = A4(k)dp, where

Per (60)

I (I+a)po  apy e )
(k) = | —— - 12 k
2(k) [ nt 1927 " ¢ +“p°)]
91
- k*, 62
6912071( + as)po (62)

and k? = k? + k%. For a selected wave vector, density pertur-
bations grow when A,4(k) becomes positive, which can only
happen when the coefficient of k? is positive, since the prefactor
of k* is negative for realistic values of 7). Therefore this
instability sets in at a critical density p,, given by

1 4 (I +a3)ps  apa
32 247 1927

which in the absence of the excluded volume, o = 0, becomes
pa = 3 /[4(1 + a3)], similarly to the expression obtained in
[14].

InFig. 4, we plot the solutions of Eq. (63) as a function of the
excluded volume strength « for fixed values of the asymmetry
parameter E. For any value of E, there exist two regions of
this parameter space. For large values of « there is no density
instability as strong excluded volume effects preclude growth
of any density variations. Instead, for smaller values of « there
is a band of density values (the shaded regions in Fig. 4), where
the density instability exists. The upper boundary of this band
goes to infinity when « approaches zero.

In the following we fix the strength of the excluded volume
interactions «, and treat E and pg as the control parameters.

e (124 ap) =0, (63)

[1]

=1.0

Po

FIG. 4. Regions of existence of the density instability for 7o = 0
and various values of E. The lines are solutions to Eq. (63), while the
shaded regions indicate where the homogeneous and isotropic state is
unstable with respect to density fluctuations (the density instability).
The lines can therefore be seen as spinodal lines, and the shaded areas
as regions of phase separation.

In Fig. 5, we plot the instability boundaries found above in
terms of these control parameters. The dotted brown line in
Fig. 5 is the critical density p., given by Eq. (60), while
the solid, dashed, and dash-dotted lines, given by Eq. (63),
enclose the regions of the density instability (shaded regions
in Fig. 5). As « increases, the density instability is pushed
towards larger values of E, but is always present. We therefore
select a representative case of @ = 0.35 (blue dashed line and
the blue shaded region in Fig. 5), and perform direct numerical
simulations of the ATC and QC models for a range of densities
and fixed motor asymmetry parameter £ = 0.2 and E = 0.5.
The former case exhibits only the instability towards a globally
ordered state, while the latter case has both types of instability.
The densities we use in our simulations are denoted by black
circles in Fig. 5.

Finally, we note that a full linear stability analysis (see
below) shows that the transition to global order and the density
instability are the only instabilities of the homogeneous and
isotropic state for both models.

1.0

)

08{ Biv=

|}

|
!
\!
\!

\
0.6 ¢

[1]
0.4 1

0.2 1

0.0
0

Po

FIG. 5. The data from Fig. 4 replotted as E vs p, graph for 7o = 0
and various values of «. The dotted brown line is the onset of global
order, given by Eq. (60). Black circles indicate points for which we
perform direct numerical simulations with the ATC and QC models:
=0, =035 E=0.2,and E=0.5withpy =2,3,..., 12
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B. Direct numerical simulations

To explore the nonlinear behavior of the ATC and QC
models, we perform direct numerical simulations of Egs. (50)
and (51), and of Egs. (57) and (58) in the parts of the parameter
space identified above. We discretize spatial derivatives by
second-order finite differences, and employ a second-order
predictor-corrector method for time integration [46,47]. Our
computations are performed on square domains 150x 150 with
periodic boundary conditions with spatial resolution Ah =
0.5, where the unit length is chosen to be the microtubular
length (see Sec. VI for details of our dimensional units);
the time step is set to Az = 0.005. Unless explicitly stated,
we set « = 0.35 and 7ty = 0, as discussed above. Below, we
present our simulation results in composite images showing
simultaneously the local density profile p(r) (color) and the
polarization vector field p(r) (arrows), normalized by its
magnitude in the globally ordered state, Eq. (61).

We start by examining the behavior of the ATC model for
E = 0.2 where, according to Fig. 5, one should expect a tran-
sition to global polar order for sufficiently high densities. For
po = 2 and 3, there exists no instability of the homogeneous
and isotropic state, and any random initial condition in our
simulations quickly returns to that state. For densities above
the global-instability threshold (brown dotted line in Fig. 5), we
observe rapid formation of a globally oriented state with a large
number of defects, as can be seen from Fig. 6(a) for py = 5.
These defects consist of vortices, inward-pointing asters that
correspond to an increase of the local density, and spatially
distributed defects of the opposite topological charge that
correspond to the minima of the local density. After sufficiently
long simulation times, these defects annihilate leaving behind
auniform, globally polarized state. The same behavior persists
at higher densities, the only difference being that there are now
sharper density gradients around topological defects. We also
observe that the typical time for all defects to annihilate grows
quickly with pg. In Fig. 6(b), for instance, we show the final
snapshot of a long run for py = 12, which continued to coarsen
over the course of the whole simulation.

At E = 0.5 the behavior of the ATC model changes con-
siderably. According to Fig. 5, as the density is increased, the
density instability is the first one to set in. For larger densities,
the density instability coexists with the globally polarized
state, while at yet larger densities, one should again expect
uniform polar order throughout the system. This scenario is

(a) (b)

FIG. 6. Instantaneous snapshots from the direct numerical sim-
ulations of the ATC model with 7o = 0, « = 0.35, and E = 0.2. (a)
po=35.(b) pp = 12.

FIG. 7. Instantaneous snapshots from the direct numerical sim-
ulations of the ATC model with 7p = 0, « = 0.35, and E = 0.5. (a)

po = 5.(b) pp =7.(c) pp = 12.

supported by our direct numerical simulations. Below the
density instability threshold, the system always returns to
the homogeneous and isotropic state. At higher densities,
we observe the following dynamical structures. For py = 5
and pyp =7 [Figs. 7(a) and 7(b), respectively], the density
instability competes with the emergence of global order, and
the ensuing high-density clusters tend to elongate to keep local
polarization aligned. Such elongated clusters often end up in
yet-higher-density regions with inward-pointing asters. Even
after a long time, the system does not settle into a steady
state; instead its dynamics comprise slow rearrangements of the
high-density clusters, mostly along the direction set by the local
polarization, punctuated by fast reorientation waves that align
locally the polarization vector with the density gradient. A
similar behavior is observed in simulations with py = 3, which
is within a narrow range of densities that are below the global
instability threshold, but above the density instability one. In
this case the system first develops clusters of high density
dispersed in a low-density background until the local density
inside the clusters exceeds the global instability threshold, after
which the dynamics resembles its higher-density counterpart
discussed above. At yet higher density, above the density
instability region [py = 12; see Fig. 7(c)], the system does
not exhibit global order as predicted by the linear stability
analysis (Fig. 5). Instead it forms high-density clusters, which
tend to merge into large-scale structures at very long times; see
Fig. 7(c). Each cluster contains a polarization field in the form
of inward-pointing asters. Perhaps this state may be viewed
as an example of microphase separation, as clusters do not
coarsen indefinitely but appear to reach a self-limiting size.
However, we do not know whether it survives at yet longer
simulation times or in larger systems.
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FIG. 8. Instantaneous snapshots from the direct numerical sim-
ulations of the QC model with 7o =0, « = 0.35, and E =0.2.
(@ po=5.(b) po =11

Now we compare these observations against the results of
our direct numerical simulations of the QC model. Since the
linear stability properties of the homogeneous and isotropic
state are the same for both models, one might expect the QC
model to exhibit a dynamical behavior similar to the ATC one.
Surprisingly, the two models are instead substantially different.
As for the ATC model, the cases of py = 2, with & = 0.2 and
0.5, and of pg = 3, with E = 0.2, yield no instabilities, and the
system returns to the homogeneous and isotropic state. Above
the global instability threshold, the QC model exhibits the same
type of dynamics forboth & = 0.2 and E = 0.5 (see Fig. 8 and
Fig. 9, respectively). Although visually these structures appear
to be similar to the ATC patterns at 2 = 0.5 [see Figs. 7(a)
and 7(b), for instance], their dynamical signatures are very
different (see the movies in the Supplemental Material [41]).
While the high-density clusters of the ATC model exhibit

FIG. 9. Instantaneous snapshots from the direct numerical sim-
ulations of the QC model with 7y =0, « = 0.35, and E = 0.5.
(@) po = 4. (b) po = 8. (c) po = 12.
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FIG. 10. Linear stability diagram of the QC model for 7y = 0 and
o = 0.35. As in Fig. 5, the dotted black line is the onset of global
order, given by Eq. (60), and the dashed blue line delineates the
region of the parameter space where the homogeneous and isotropic
state exhibits the density instability (the same as the dashed blue
line in Fig. 5). The brown solid line indicates the region where
a homogeneous, globally ordered state becomes linearly unstable.
Inside this line we also specify the instability mode: magenta-shaded
region (inside the magenta dash-dotted line) corresponds to the
density and polarization fluctuations modulated along the direction
of the global order, while the brown-shaded region corresponds to
modulations both perpendicular and parallel to that direction.

slow, largely coarsening-type dynamics with the polarization
quickly adjusting to slowly evolving local density gradients,
here the density and polarization evolve on comparable time
scales, never settle down, and appear to be chaotic for any
value of E and pg in Figs. 8 and 9. Even in the regions of
approximately homogeneous local density, the polarization
field exhibits significant time dependence, suggesting that
the globally polarized state is linearly unstable for these
parameters.

To validate this statement, we performed a linear stability
analysis of the globally polarized state for the ATC and QC
models; see Supplemental Material for details [41]. First, this
analysis confirms that the homogeneous and isotropic state,
P =0, of both models does not have any other instability
than the density and global-order instabilities, discussed above.
Next, we observe that while the globally polarized state is
always linearly stable for the ATC model, for the QC model
there is a range of parameters where it becomes unstable with
respect to coupled polarization and density fluctuations. In
Fig. 10 we plot the results of both types of linear stability
analysis of the QC model. There, the black dotted line and
the blue dashed line (both taken from Fig. 5) correspond to
the instability boundary of the globally oriented state and
the region of the density instability, respectively. The solid
brown line marks the boundary above which the globally
ordered state is linearly unstable. Additionally, within that
region there are two possible instability modes. The first one is
characterized by a modulation in the density and polarization
along the direction of the global order (magenta shaded region
inside the dash-dotted line); the second has modulations both
perpendicular and parallel to that direction (brown shaded
region). We, therefore, speculate that when there is global
order (i.e., above or to the right of the dotted black line in
Fig. 10), the QC model exhibits three types of behavior that
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(a)

FIG. 11. Comparison between the long-time dynamics of the ATC
and QC models with 7y = 0, = 0.6, E = 0.5, and py = 12. (a) ATC
model. (b) QC model.

cannot coexist: (i) the tendency to create global orientation
with a uniform density profile, (ii) the density instability, and
(iii) the instability of the global order. The interaction between
these three instabilities is what leads to irregular dynamics,
as we see in Figs. 8 and 9 and movies in the Supplemental
Material [41].

As we can see from Fig. 10, for py > 3, all our simulations
(green circles) belong to the unstable region of the parameter
space. We therefore performed additional simulations (not
shown) of the QC model for E = 0.2 with pp =20 and
& = 0.5 with py = 25, that both lie outside the unstable region
(brown solid line), and confirmed the absence of chaotic-like
behavior at long times. Instead, both systems settled into
a globally polarized state interlaid with topological defects,
similarly to the case of the ATC model.

The nontrivial dynamics presented above relies on the
simultaneous existence of at least two types of instability for the
same values of E and pg. Figure 4 suggests that for moderate
values of &, the density instability only exists for small values
of «. To study the dynamics of both models outside of this
regime, we set « = 0.6 and considered & = 0.2 and E = 0.5,
as before. The linear stability analysis of the globally polarized
state suggests that both the ATC and QC models are linearly
stable in that regime, and the only instability threshold is given
by Eq. (60). Our simulations confirm that both models exhibit
rather simple dynamics, similarly to the case of the ATC model
with E = 0.2 and o = 0.35: below p.;, the system returns
to the homogeneous and isotropic state, while above p, it
goes through a series of long-lived topological defects before,
eventually, settling into the homogeneous and isotropic state.
At the highest density considered, py = 12, the system gets
trapped into a state with an apparently stable (or long-lived
metastable) arrangement of topological defects (see Fig. 11).
The main difference between the two models, however, is that
the inward-pointing asters of the ATC model correspond to
local density enhancement, while similar topological defects
in the QC model lead to local density minima.

The two situations presented above, « = 0.35 and o = 0.6,
seem to comprehensively cover the behavior of the ATC and
Q models, and we have not observed any other dynamical
structures besides the patterns presented above. As mentioned
at the beginning of this section, we restricted our simulations to
a realistic, albeit arbitrary, case of tp = 0. Another value of 1
would lead to a quantitative effect on the instability boundaries,

while the qualitative behavior is still the same. This is only the
case for 1 4+as > 0, as Eq. (62) suggests, which is always
true for E < 1. When 1 + a5 < 0, the bi-Laplacian terms in
Egs. (50) and (57) do not result in the length scale selection
for the density instability, and a yet higher-order gradient has
to be added to the equations in that case.

VIII. DISCUSSION

The main goal of this study was to revisit the kinetic theory
of microtubule-motor mixtures originally derived in [14], as
well as its coarse-graining into a set of dynamical equations
for (slowly varying) density and orientation fields, Eqs. (24)
and (25). We also studied (by linear stability analysis and direct
numerical simulations) the resulting equations, and analyzed
the corresponding pattern formation dynamics.

In particular, we considered the validity of the effective
interaction kernel, Eq. (15), used in [14]. To address this
issue, we developed a semianalytical method that allowed
us to calculate the interaction integrals, Eqs. (5) and (6),
exactly. We also studied the closure relationship, Eq. (21),
used in [14], and compared it to a closure method routinely
used in Ginzburg-Landau-type theories of pattern formation
[24,42-44]. We derived two dynamical systems of equations,
which we respectively called the ATC model and QC model,
that utilize our approximation-free values of the interaction
integrals, but use various closure relations. While the ATC
model uses the same closure as [14], the QC model uses the
self-consistent closure derived in Sec. VIB. Together with the
original equations of Aranson and Tsimring, Egs. (24) and (25)
(which we refer to as the original Aranson-Tsimring model),
these models allowed us to assess the importance of each of
the assumptions mentioned above.

We used a linear stability analysis and direct numerical
simulations to compare these three models. For the parameters
of the effective kernel chosen by Aranson and Tsimring
[14], the model predicts three types of behavior: (i) the
homogeneous and isotropic state for low densities, (ii) the
globally polarized state with various topological defects for
intermediate densities, and (iii) the density instability leading
to the formation of high-density clusters at high densities.
Our analysis with the exact kernel demonstrated that under
similar assumptions the order of the phases is different, with the
density instability often setting in before the globally polarized
state. Therefore, in order to fully resolve the dynamics at
late times, the equations of motion should have a physical
mechanism that limits the otherwise unchecked growth of
the density instability. The original Aranson-Tsimring model
simply relies on the nonlinear coupling terms (i.e., terms
proportional to H) in Eq. (24) to cut the growth of density
fluctuations; however this is a viable route only for sufficiently
large values of H. To cure this problem we introduced steric
repulsion between the microtubular bundles: this has to be
calculated up to the third virial coefficient or higher in order
to provide a stabilization mechanism that works for any
density. This procedure allowed us to resolve the dynamics
of our models in the region of the parameter space where the
density and global instabilities coexist. Our main conclusion
here is that the usage of the exact kernel significantly alters
the positions of the instability boundaries and, unless the

022412-14



KINETIC THEORY OF PATTERN FORMATION IN ...

PHYSICAL REVIEW E 97, 022412 (2018)

exclusion volume parameter « is rather large, the density
instability coexists with the global order, leading to patterns
absent from the original Aranson-Tsimring model [14]. When
the density instability is absent, the ATC model exhibits the
transition to a globally polarized state, mediated by a variety of
topological defects, similar to the original Aranson-Tsimring
model [14].

Additionally, by comparing the ATC and QC models, we
concluded that the self-consistent closure employed in the
latter model changes the stability properties of the globally
polarized state in the region of the parameter space where
it coexists with the density instability, leading to seemingly
chaotic patterns. Also, the topological defects observed for
this model in the absence of the density instability are of rather
different nature than the corresponding defects in the ATC or
original Aranson-Tsimring models.

We therefore conclude that the phase behavior of the system
is quite sensitive to the functional form of the kernel and the
closure strategy. When either the effective kernel Eq. (15)
or a closure similar to Eq. (21) is employed, the resulting
phase diagram differs significantly from the phase diagram
of the QC model that we hold to be the most consistent of
the three models discussed above. Which of the models is the
best approximation to the long-wavelength dynamics of Eq. (3)
with Eq. (14) is an open question that can perhaps be settled
by either direct numerical simulations of Eq. (3) or by the
corresponding agent-based simulations. Both approaches are
outside the scope of the present work. We note here that our
results also suggest that it might be of interest to analyze how
the results in previous studies on microtubule-motor mixtures
such as [23] may be affected by the use of the QC equations
of motion.

We would like to point out that there is another addi-
tional remarkable difference between the QC and the other
two models: in the absence of the motor asymmetry along
microtubular bundles—i.e., for & = 0—the density and the
polarization equations of the Aranson-Tsimring and the ATC
models decouple from each other, while this is not the case
in the QC model, which still exhibits dynamical, seemingly
chaotic patterns, similarly to the E # O case (not shown).

Finally, we note that as the main goal of this study was
to hone the techniques required to derive consistent hydrody-
namic equations, we adopted a simple set of collision rules,
formulated in Fig. 1, that are the basis for Eq. (1), and the
expression for the interaction kernel, Eq. (14). Detailed studies
of the interactions between microtubular bundles [7,16,48,49]
suggest that these assumptions are unlikely to be fully re-
alistic, and will require refinement. Additionally, there is a
need to understand the role that potential microtubular self-
propulsion, discussed by Liverpool, Marchetti, and co-workers
[1,20,21,25], might play in the dynamics of microtubule—
molecular motor mixtures. We plan to address some of these
questions in our future work.
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