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Curvature-driven positioning of Turing patterns in
phase-separating curved membranes†

Giulio Vandin,a Davide Marenduzzo,b Andrew B. Goryachevc and Enzo Orlandini*a

We introduce a new finite difference scheme to study the dynamics of Turing patterns of a two-species

activator–inhibitor system embedded on a phase-separating curved membrane, modelling for instance a

lipid bilayer. We show that the underlying binary fluid can strongly affect both the dynamical and the

steady state properties of the ensuing Turing patterns. Furthermore, geometry plays a key role, as a large

enough local membrane curvature can both arrest the coarsening of the lipid domains and position the

patterns selectively at areas of high or small local curvature. The physical phenomena we observe are

due to a minimal coupling, between the diffusivity of the Turing components and the local membrane

composition. While our study is theoretical in nature, it can provide a framework within which to

address intracellular pattern formation in systems of interacting membrane proteins.

1 Introduction

Domain and pattern formation on curved membranes are observed
in a number of systems, ranging from condensed matter physics
to cell biology.1–11 Interesting examples relevant to the latter field
are the formation of lipid rafts in eukaryotic cell membranes,12

the spontaneous emergence of protein clusters when yeast cells
polarise,9,10 and the pattern formation, clustering and polar
localisation of bacterial proteins.13–16 In some cases at least, it
is known that geometry is important, and pattern formation
proceeds differently on a curved membrane with respect to a flat
substrate; there is now indeed general consensus that curvature
provides a cue to selectively recruit some peptides, or to reposition
whole protein clusters.17–20

Here we consider a generic pattern forming system on a
curved surface, where the patterning dynamics is coupled to an
underlying phase separation. This nonequilibrium problem is
broadly motivated by recent observations that protein localisation,
in both bacteria and eukaryotes, is driven by interactions with
the lipids in the interior cell membrane.14–16,21 In particular,
protein mobility has been shown to be affected by the local
order or fluidity of a membrane:21 similarly, interactions with
different types of lipids can also profoundly affect protein
dynamics.22,23 It is therefore of interest to ask, more in general,
how the lipid membrane dynamics can affect the pattern forming

potential of a reaction–diffusion protein model, which is the topic
of this work. The equations we propose are also theoretically
intriguing because they probe the interplay between a close-to-
equilibrium conserved dynamics (that of the phase-separating
membrane) to a nonequilibrium system where the densities of
chemical species need not be conserved (the Turing components).
While we use the Turing system for simplicity, we note that Turing-
like models can successfully describe, for example, the clustering
of GTP-bound Cdc42 in budding yeast.9,24,25

We choose here to couple the Cahn–Hilliard and Turing
dynamics in a minimal way, by postulating that the diffusivity
of the activator and inhibitor which together create the Turing
patterns may depend on the local composition of the (lipid)
membrane; this is in line with the experimental evidence
mentioned previously.14–16,21 While in a system which reaches
thermodynamic equilibrium a non-uniform diffusivity is immaterial
for the long-time behaviour (as the statistics of the steady state is
solely determined by the Boltzmann weight which is independent of
the diffusion coefficient), this feature can instead have far-reaching
effects in a nonequilibrium framework such as the one we consider
here. As we shall see, curvature further enhances this potential.
In particular, we show that on a flat geometry the coupling with
lipid dynamics can both change the timescale and kinetic
pathway en route to patterning, as well as the qualitative nature
of the pattern ultimately formed (for instance from spots to
stripes). On a curved surface, the Cahn–Hilliard coarsening may
be arrested if the underlying free energy is curvature-dependent;
this in turn can redirect the Turing pattern, for example to
highly curved regions only.

From a more technical point of view, it is important to highlight
that it is highly non-trivial to follow numerically the evolution
of a system of partial differential equations with non-uniform
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diffusivity in curved space; as a result problems such as the one
we discuss here cannot be addressed, for instance, within most
finite element algorithms, such as the one we recently used to
study constant-diffusion reaction–diffusion or phase separation
models on generic surfaces.26,27 This is because common
algorithms exploit some symmetry properties of the standard
Laplace–Beltrami operator, which are no longer present when
the diffusion coefficient varies spatially. The alternative route
we follow here is to develop a more versatile finite difference
scheme, which can be generalised more easily than the finite
element algorithms, at the price of a slightly inferior numerical
accuracy.

This article is structured as follows. In Section 2 we review
the basic components of our coupled model, namely the Cahn–
Hilliard dynamics of phase separation and the Turing reaction–
diffusion model on a flat surface; we also introduce the finite
difference algorithm that was used to solve them. We further
discuss the covariant equation with and without an explicit
coupling of the dynamics with the local curvature of the membrane.
In Section 3 we present the results of our simulations on differently
shaped vesicles. Section 4 contains a brief discussion of our
results and our conclusions.

2 Models and methods

The purpose of this paper is to study a system of coupled partial
differential equations on curved (closed) manifolds. We chose
to study the behaviour of such equations on a limited set
of curved surfaces, to better exemplify the main features of
the model. The general idea of our study is to show how the
coupling between a phase-separating lipid membrane, obeying
the Cahn–Hilliard dynamics, and a pattern-forming Turing
system can induce the formation of structures only in localised
regions of the system, and that these regions in a curved
environment can be geometrically controlled.

2.1 Cahn–Hilliard dynamics for domain formation in a phase
separating binary mixture

The phase separation in the membrane is modelled by the
well studied Cahn–Hilliard equation,28 describing a globally
conserved system, the composition of the mixture, whose
dynamics is governed by gradients in the chemical potential,
a quantity which can be written as the functional derivative of
the following free energy functional:

F½j� ¼
ð
d2x f ðjðxÞÞ þ k

2
rjðxÞj j2

h i
;

where f is a Ginzburg–Landau-like function which displays a
local maximum in the origin and two symmetric minima,
which represent the two equilibrium phases of the field j.

A physical picture of this model might be the following: in a
system with two immiscible (e.g. lipid) phases A and B, the local
concentration of the phase A being fA A [0, 1] and the one of
phase B defined as fB = 1 � fA, a single order parameter can be
defined as their difference j = fA � fB = 2fA � 1, which
contains all the information on the local composition, since the

two fields are not independent. Thus, choosing a bulk free
energy density of the form

f ðjÞ ¼ 1

4
j4 � 1

2
j2

would induce an equilibrium configuration in which separate
domains are formed with constant values j = 1 corresponding
to phase A and j = �1 corresponding to phase B.

An extension of this simple model will be discussed in
Section 2.3, where an additional term in the free energy is
added, representing a linear coupling of j with the local Gaussian
curvature of the curved surface on which the field is defined.

2.2 Turing-like model for pattern formation

We now review the general Turing model, which we take as a
prototypical example of pattern formation. The basic set-up
is a nonlinear activator–inhibitor reactor–diffusion system,
exemplified by the general set of equations (for simplicity we
first review the standard, constant-diffusivity version):

@u1
@t
¼ F u1; u2ð Þ þD1r2u1

@u2
@t
¼ G u1; u2ð Þ þD2r2u2

:

8>>><
>>>:

General conditions for patterning require that: (i) a linearly
stable equilibrium exists for the non-spatial problem (i.e. in the
limit D1 = D2 = 0); and (ii) the same point in (u1, u2) space
becomes an unstable equilibrium when the diffusive terms are
included. This is the so-called diffusion-driven instability:
to observe it it is crucial that the inhibitor diffusion coefficient
D2 needs to be bigger than a critical threshold, so that the
inhibitor ‘‘escapes’’ from regions where higher concentrations
of activator are present. This allows local growth in the activator
concentration, and consequently the formation of patterns.

Among all possible systems forming Turing patterns, we
focus her on the Gierer–Meinhardt model, with the rescaled set
of equations

@u1
@t
¼ g

u1
2

u2
� au2

� �
þr2u1

@u2
@t
¼ g u1

2 � u2
� �

þDr2u2

8>>><
>>>:

;

where g represents the spatial scale of the system and a is a free
parameter.29

In this case, the conditions for the onset of a diffusion-
driven instability are

0o ao 1; aD2 4 3þ 2
ffiffiffi
2
p

:

Therefore, when choosing a = 0.5, the critical D for the

formation of patterns is Dc ¼ 6þ 4
ffiffiffi
2
p

; smaller values of D
leave the uniform state stable. Note that the Gierer–Meinhardt
model is here introduced as a simple generic model to describe
patterns of finite sizes rather than macroscopic phase separation.
A simple physical mechanism which would lead to such micro-
phase separation is, for instance, when protein have both a
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short-range attraction and a long-range repulsion, e.g., due to
electrostatics.30 Another mechanism is via signalling: for
instance, there are observations of stripey and wavy patterns formed
by the small GTPase Rho protein in the plasma membrane.31

In our work, we consider a non-trivial extension of this
model where the diffusion coefficient D is spatially varying,
because it depends on the local composition of the underlying
binary mixture j. As we shall see, we find non-trivial patterns
when Dc is between the values of the diffusion coefficients in
the A-rich and B-rich phases. The functional dependence for
the dependence of diffusivity on the local composition of the
binary fluid is a sigmoidal one,

DðjÞ ¼ Dc þ
DD
2
þ DD
1þ exp �v j� j0ð Þð Þ: (1)

where DD and v are respectively the maximum deviation DD
from Dc, and the sharpness v of the transition. Furthermore,
j0 represents a threshold value of the density-conserving field
which is intermediate between that corresponding to an A-rich
and a B-rich phase (in practice we chose j0 = 0). While our main
emphasis is for spatially varying D through its dependence on
j, we will also compare the results when j is substituted by the
Gaussian curvature of the surface, K(x).

2.3 Coupled model on curved surfaces

In the context of differential geometry, the definition of a system
of partial differential equations (PDEs) on manifolds requires
the choice of a consistent ‘‘covariantization’’ (i.e. the route through
which Euclidean gradients become covariant derivatives). This is
needed in order to write up a free energy functional appropriate
for any curved geometry. The simplest way to do so (borrowed
from general relativity) is to choose a minimal coupling. This is
implemented by simply replacing the flat metric induced by
the Euclidean scalar product with the Riemann metric g of
the manifold. In other words, the following replacements are
operated:

Zmn - gmn, @m - Dm, r2 - rLB
2,

where Zmn = dmn is the euclidean metric represented by the 2 � 2
identity matrix, @m is the partial derivative along direction m and
Dm the corresponding covariant derivative on the manifold, and
rLB is the Laplace–Beltrami operator on the manifold.

Consequently, the free energy of the compositional order
parameter j is rewritten as

F½j� ¼
ð
d2u

ffiffiffi
g
p 1

4
j4 � 1

2
j2 þ k

2
gmn Dmj
� �

Dnjð Þ
� �

;

which induces the following system of PDE:

@j
@t
¼ rLB

2 j3 � j� krLB
2j

� �

@u1
@t
¼ g

u1
2

u2
� au2

� �
þrLB

2u1

@u2
@t
¼ g u1

2 � u2
� �

þ gmnDm DðjÞDnu2ð Þ

8>>>>>>>>><
>>>>>>>>>:

: (2)

While the Cahn–Hilliard and Turing dynamics are only
coupled through the diffusivity of the inhibitor, we consider
two possible couplings to the curvature. On one hand, there is
an intrinsic curvature effect on all equations of motion through
the diffusive terms, which contain covariant, and geometry-
dependent, derivatives. On the other hand, we also consider
one case where the free energy contains an explicit coupling
between local membrane composition, j, and curvature. This
term is motivated physically as certain lipids can be attracted by
regions of high curvature.11,19,20 To describe this phenomenon,
we use the following modified free energy

F½j� ¼
ð
d2u

ffiffiffi
g
p 1

4
j4 � 1

2
j2 þ k

2
gmn Dmj
� �

Dnjð Þ þ cjK
� �

; (3)

where c controls the strength of the coupling. Differently from
previous works,27 the field j is coupled to the gaussian curvature,
K(u) of the surface. Simulations in which K(u) is replaced by
the mean curvature do not show significant differences in the
overall dynamics of the system.

The equation for j resulting from the new free energy is

@j
@t
¼ rLB

2 j3 � j� krLB
2jþ cK

� �
: (4)

It is useful to outline in some more detail some properties
of the coupled model with direct coupling between j and
Gaussian curvature. First, recall that the classical Cahn–Hilliard
equation (c = 0) involves the interplay of a bulk term f (j) and
an interface term r2j. The stationary equation reduces to
a constant solution in the bulk of the single phases, equal to
j = �1 (found by minimising the bulk term f (j)), whereas in 1D
the compositional profile close to an interface (placed at x = 0)

can be found exactly to be jðxÞ ¼ tanh x=
ffiffiffiffiffiffi
2k
p� �

.
Now, consider the coupled system, so the case c a 0.

The steady state, equilibrium solution of the Cahn–Hilliard
equation is given by the solution of

j3(x) � j(x) � kr2j(x) + cK(x) = 0.

Within the bulk part – where the laplacian term can be set to
zero – we have a bifurcation diagram which reduces to only one
equilibrium over a certain value of cK. Limiting ourselves to a
region with constant curvature %K for the sake of simplicity, the
equilibria of the compositional order parameter are given by
the equation j3 � j + c %K = 0. In other words, the curvature acts
as an external field which shifts the equilibria from j = �1 and
favours one of them (for instance the negative one for c %K 4 0).
Furthermore, while for small values of c %K both the c = 0
equilibria are metastable, above a critical value (at which one
of the equilibria becomes an inflection point), there is a single
solution, thereby effectively attracting only one of the two
phases (A-rich or B-rich) to regions with curvature %K.

3 Results

We now follow the dynamics of the coupled (non-uniform
Turing diffusivity) and uncoupled (constant Turing diffusivity)
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systems, showing their apparent differences in the resulting
dynamics and the equilibrium solutions.

3.1 Dynamics on a flat surface

To begin with, we consider the dynamics of the system on a flat
surface. Numerical integration of eqn (2) has been performed
on a triangular grid of N = 8686 points with periodic boundary
conditions and by using the Adams–Bashforth–Moulton predictor–
corrector method for the time evolution32 with time step Dt = 0.01
(see Appendix A for more details on the algorithm).

Fig. 1 shows the time evolution of the j field and of the
activator field u1: it is apparent that patterning occurs either in
the A-rich phase regions (j = +1) or very close to it: these are
the regions where the value of D(j) is large enough to trigger
a diffusion-driven instability in the Turing equations. More
interestingly, by comparing the kinetics of the simple Turing
system with the one coupled to the phase separation dynamics,
one observes that the j-dependent diffusivity leads to a different
selection of pattern type (stripes versus spots) and of wave-
lengths. This can be quantified by computing the time evolution
of the typical cluster size of the activator L[u1](t) as the first
moment of the structure factor, see Fig. 2. In particular, for the
Turing system (red, green and cyan curves) one observes an

initial fast (exponential) growth, followed by a decay, due to the
nonlinear component of the equation that stabilizes the Turing
pattern, to the typical length of the resulting spatially modulated
steady-state. Notice that in the coupled case the small time
dynamic is characterised by very small fluctuations of L[u1]. This
is because the spatial configuration of the reactants becomes
progressively homogeneous until the droplets of the pattern-
allowing phase become large enough for the patterning to
initiate. On the contrary, after this initial regime, the fluctuations
become more important than in the uncoupled case. This is due
to the heterogeneity of the domains size, to the shrinking of
some patterns by Ostwald ripening and the change in shape of

Fig. 1 Computed dynamics with periodic boundary conditions on a
plane. (A) Snapshots of the Cahn–Hilliard phase separation dynamics for
j, starting from an initial random configuration. (B) Plots of the activator
field u1 in the Gierer–Meinhardt equations, with a diffusion coefficient
coupled with j. The uncoupled (constant diffusivity) dynamics of the
activator is shown in sequence (C) for comparison. The parameter of the
Cahn–Hilliard dynamics is k = 4; the diffusivity function is characterised
with a variation DD = 10, and a sharpness n = 10. In all the figures the color
scale of the patterning dynamics ranges from 0.1 (purple) to 4.5 (white)
whereas the one referring to the coarsening dynamics ranges from
j� = �1 (blue) to j+ = +1 (red).

Fig. 2 Time evolution of the length scales of the interacting fields of Fig. 1.
(top panel) The growing blue curve refers to the length scale of the binary
mixture phases, L[j], undergoing the coarsening dynamics of Fig. 1A. Its
behaviour is in agreement with the standard Cahn–Hilliard (model B)
dynamics in finite domains. Indeed L[j] grows with time as t1/3 (see dashed
curve) until it reaches the system size. The red and green curves refer
instead to the typical length scale of the Turing patterns, L[u1], evolving
respectively with the coupled (Fig. 1B) and uncoupled (Fig. 1C) dynamics:
the deviation of the two curves in the long time limit reflects the change
between the striped (Fig. 1B) and the spotted (Fig. 1C) patterns. In the
bottom panel we compare the time evolution of the Turing patterns
length scale L[u1] in the coupled case when the Cahn–Hilliard coarsening
is either comparable (red curve) or much faster (cyan curve) than the
reaction–diffusion dynamics. In all cases the size of the bars (proportional
to the fluctuations of L[u1]) have been computed as the statistical error
over 16 simulations.
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the growing domains. The interplay between coarsening and
patterning dynamics can be further explored by looking also at
the extreme case in which the binary mixture coarsening is
much faster then pattering (see bottom panel of Fig. 2). In
particular we choose the extreme situation in which patterning
occurs on a completely phase separated binary mixture. In this
case (cyan curve) the fluctuations of L[u1] are less pronounced
since the patterning dynamics occurs on an equilibrated (i.e.
phase separated) substrate. In both coupled cases the stationary
state value of L[u1] is higher than in the simple (i.e. uncoupled)
Turing system indicating the selection of a stripey pattern rather
than a more closely packed, spotted one. The fluctuations in the
scale length of j at steady state (blue curve) are caused by the
fact that there are a few possible steady state configurations:
either a circular domain of one phase within the other, or two
parallel rectangular domains of the two different phases.

The difference between the coupled and uncoupled dynamics
gives also rise to a distinct resolution of defects: while defects
disappear altogether in the uncoupled model (Fig. 1C), defect
annealing can be imperfect in the coupled version (Fig. 1B). This
is because in the latter case defects may arise en-route to steady
state due to coarsening, for example when two domains with
different internal stripe orientation merge. In the case of Fig. 1B
the boundaries of the pattern-allowing region are too far apart, so
that the patterns are not constrained in a striped configuration in
the whole domain, and the defects which are far enough from the
boundaries are free not to cancel out. However, in a sufficiently
small domain, the closeness of the boundaries forces the final
configuration into the most symmetric one commensurate with
the periodicity at the boundaries. In this case, if we choose a
smaller domain for the simulation, evenly spaced stripes are
formed at equilibrium (see Fig. S1, ESI†).

3.2 Dynamics on curved surfaces

We now turn to the results obtained from eqn (2) on a curved
surface, beginning with an ellipsoidal geometry (either rod-like,
prolate, or disc-like, or oblate). These simulations are more
demanding in view of the anisotropic nature of the surface: we
therefore used a less refined grid with N = 2562 points but with
a much smaller integration time step Dt = 0.001. First, we focus
on the case of intrinsic curvature, where the Gaussian curvature
does not directly enter the bulk free energy. As in the flat case,
patterns appear quickly in regions of high j (Fig. 3).

We first neglect any explicit coupling of j with the curvature
of the surface. In this case the coarsening dynamics proceeds
until phase separation is completed, irrespectively of the specific
geometry of the surface, as already pointed out in previous
works.26,27 It is important to note that the only difference
between Fig. 1(A and B) and Fig. 3 is the geometry of the
surface. Remarkably, this is enough to select different patterns
in steady state (spots in the curved geometry, stripes in the
planar one). The kinetics we observe on the curved surface may
also show multiple switches between patterns; for instance on a
prolate ellipsoidal geometry the Turing reactants first form
clusters; these then evolve transiently into stripes, and eventually
into spots (see Fig. 3D).

A second case of interest is that in which the curvature directly
enters the free energy, so as to model differential targeting of lipids
to areas of high curvature. This geometric coupling can arrest
coarsening in the Cahn–Hilliard dynamics, so that the number of
‘‘lipid’’ domains is larger than one in steady state (see Fig. 4, 5 and
Fig. S3, ESI†).27 The number of domains in steady state depends
on geometry: for instance we end up with two domains at the tip of
a sufficiently prolate ellipsoid (see Fig. 4), whereas when modelling
a sphere with Gaussian bumps, in steady state there may be as
many domains as there are bumps (see Fig. 5A). A case with a
single bump is reported in (Fig. 2A, ESI†).

To understand why the direct coupling between j and
curvature arrests the coarsening, we recall that as explained
in Section 2.3 the curvature K(x) may be viewed as an external
field locally promoting high values of |j| (negative j in the
example of Fig. 4). If there are several places where K(x) is high
(e.g. a sphere with many bumps), then the coupling to the
curvature favours the formation of a domain of j in each of
these locations. Because the overall composition of the binary
mixture is conserved, and because the highly curved regions are
fixed, it is not possible to join up these domains to form a
single one without creating large interfaces which are thermo-
dynamically unfavourable. The resolution of these competing
factors is to arrest coarsening and end up with a multidomain
steady state.27 This argument also suggests that, according to
the value of the surface tension and the coupling strength c to
the curvature, the final number of domains can be controlled
(see Fig. S1 and S3, ESI†).

Note that, while the Turing fields do not affect the dynamics
of the binary system, the formation of Turing patterns depends

Fig. 3 Dynamics on an ellipsoidal geometry. (A) Displays the evolution of
j on an oblate ellipsoid, (B) is the corresponding u1; (C) and (D) are
analogous sequences for j and u1 respectively, on a prolate ellipsoid.
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strongly on the lipid concentration. In particular the coupling
between the Turing dynamics and phase separation drives the
patterns to domains with large values of j, where the diffusivity
of the inhibitor is large; as a result, in Fig. 4 and 5, patterns
form in the low-curvature domains. Inverting the sign of the

curvature coupling term c leads to the opposite behaviour with
patterns now targeted to the high curvature regions, provided
that the region with higher curvature is larger than the emerging
lengthscale of the Turing patterns.

The pattern morphology (both over time and in steady state)
is also determined geometrically, but in a subtler way. For
instance, on an oblate ellipsoid local clusters of the activator
create initially, to yield regular spot patterns at the flat sides
(only the top one is shown in Fig. 4(A and B)). Instead, on a
prolate geometry the initial dynamics is similar, but the pattern
is later on relocated to a narrow central band on the ellipsoid,
where it mutates to a set of tilted stripes. In this case, the
selection of different patterns in steady state is simply related
to the final symmetry of the domains which host them (an
axially narrow symmetric band favours stripes in the perpendicular
directions, two larger discs are isotropic and can accomodate spots).

In reality, the curvature of biological surfaces can vary more
sharply than on the ellipsoids of Fig. 4; examples are budding
cells such as yeast where a functional bump develops on the
cell membrane. Situations like this can lead to a more complex
dynamics in our coupled Cahn–Hilliard–Turing model. An
example is shown in Fig. 5, where a sphere with four bumps
is considered (see also Fig. S2A and B, ESI† for sphere with a
single bump). The positive curvature at the bumps recruits
negative domains of j which stop coarsening and drive away
the Turing patterns. As a result, stripes form which connect the
negative j bumps; this effectively creates four disconnected
domains, each of which houses a regular array of activator
spots (Fig. 5 and Movie S1, ESI†).

It is instructive to compare the patterns observed for the
Turing dynamics coupled to the phase-separating boundary to
a simpler version of the model where the diffusion coefficient
of the Turing inhibitor depends directly on the surface curvature,
and phase separation is not modelled. This can be done in
practice by replacing j with K(x) in eqn (1). The results are
shown in Fig. 6: while the patterns are now targeted to high or
low curvature by hand, the dynamics by which they form is quite
different. This is because the patterning domains are now static

Fig. 4 Simulations with a direct coupling between curvature and j in the
free energy. In column (A) the evolution of the driving field j on an oblate
ellipsoid is shown, along with the corresponding patterns in the Turing
species – localized in the zones with least curvature – on column (B).
Columns (C) and (D) display the same for the case of a prolate ellipsoid.
The size of the pattern-allowing domains is limited by the free-energy
coupling, which, cannot be too high in order to keep the time variation of
j small enough for numerical stability.

Fig. 5 Localized pattern formation on a sphere with four bumps. Similarly
to other surfaces, the coupling promotes pattern formation on regions
with smaller curvature. In row (A) the time evolution of j is shown: the
positive phase spreads throughout the central region of the surface, while
the negative phase is allowed to be only on the bumps (higher-curvature
regions). In row (B) the corresponding patterning of the activator field u1

occurs in the lower-curvature regions which are rich in the j = 1 phase.
Note the coexistence of different patterns modes: striped around the
bumps and spotted in the flat region.

Fig. 6 Examples of Turing patterning dynamics when the inhibitor diffusivity
depends on the (local) surface curvature, namely D = D(K(x)). Rows (A) and
(B) show the time evolution of the activator field u1 respectively on an
oblate and prolate ellipsoid. It can be seen that the resulting patterns differ
from those obtained when the Turing system is coupled to the binary phase
separation dynamics.
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in space, whereas they are dynamic and linked to the Cahn–
Hilliard kinetics in the coupled model. Consequently, we
usually observe no switches in morphology over time, and as a
result the steady states are different (compare Fig. 6 with Fig. 4
and Fig. S2B with Fig. S2C in the ESI†). In other words, the
dynamic nature of the coupling between the Turing species and
j increases the pattern forming potential of the system.

4 Conclusions

In summary, in this work we have investigated by computer
simulations the dynamics of a Turing pattern-forming system
coupled to an underlying phase separation on a curved surface.
This problem is motivated by recent experiments which suggest
that some of the localised patterns formed by membrane-
binding proteins in bacterial and eukaryotic cells are profoundly
affected by their interaction with lipids on the membranes.13–16,21 In
our framework, therefore, the Turing model may be viewed as a
minimal generic description of protein systems, and the Cahn–
Hilliard equation may be seen as an approximate model of lipid
dynamics. We note that the phase separation in cell membranes
of living organisms does not proceed to completion but is
arrested and results in the formation of nanoscale and mesoscale
clusters;33,34 the case we considered is simpler from a physical
point of view, as it eventually results in macroscopic phase
separation. This model is useful to see what generic effects the
coupling of pattern formation to lipid dynamics can have.
Furthermore, it should be possible to engineer in vitro a more
similar situation to the one considered here, by studying pattern
formation of proteins interacting with lipid bilayers or phase-
separating vesicles.35

Our simulations show that on a flat geometry the dynamics
of pattern formation through the Turing diffusion-driven
instability is kinetically slowed down by the coarsening of lipid
domains. The coarsening domains gradually increase the length
scale at the disposal of the Turing reactants, and as a result
these can create patterns which would otherwise be unstable in
the absence of the phase separating background.

The situation is more intricate in a curved geometry.
There, lipids can be differentially attracted to regions with

different local curvature, and this in turn drives the Turing
pattern to either high or low curvature domains; the morphology
of the patterns evolving dynamically and selected in steady state
also subtly depend on the local geometry: for instance stripes form
at narrow cylindrical bands, while spots are favoured on flatter
regions. Surfaces with multiple bumps can feature spatial
coexistence between different kinds of patterns.

It is important to highlight that these phenomena appear in
the presence of a minimal coupling between Turing and lipid
dynamics: all that we assumed was that the diffusivity of one of
the Turing species (or equivalently the ratio between the diffusion
coefficients of the two species) is non-uniform, but depends on the
underlying lipid. This assumption is well grounded on recent
observations that the motility of membrane-binding proteins
depend on the local lipidic environment on the membrane,21

hence it is more natural than other possible assumptions leading to
qualitatively similar results, e.g. that the diffusivity of the pattern-
forming species may itself directly be curvature-dependent.

On the one hand, we hope that our results will provide a
useful if highly simplified framework within which to rationalise
some of the aspects of pattern formation on biological membranes,
or to stimulate studies on pattern formation on phase separating
vesicles in vitro. On the other hand, the finite difference algorithm
which we used can in principle also allow extension to cases in
which polar or tensorial fields enter the dynamics. This is relevant,
for instance, when the pattern forming species are elongated and
can locally acquire orientational order, such as for rod-like proteins,
or for protein fibrils.36,37 These situations are still very rarely studied
in non-Euclidean geometries, but our finite difference algorithm,
which comes with an appropriate optimised discretisation of the
curved surface (see Appendix A), could in principle address those.

Another possible extension of this study would be to replace
the binary mixture model with mixtures with surfactant molecules.
This would give rise to lipid phases with lamellar behaviour and
probably different selection mechanism for the Turing patterns.
Finally, although we focused exclusively on patterning and phase-
separation dynamics on static surfaces it is reasonable to assume
that a feedback mechanism between phase separating fields
and shape changes in the membrane shape can be potentially
important. Adding surface dynamics to our approach is beyond
the scope of this study but is certainly an issue worth to be
explored in the near future.

Appendix A: finite difference scheme
on curved surfaces

Our algorithm is based on a finite-difference scheme already
used in phase separation simulations.38–40 The reason why we
chose such an algorithm instead of the broadly used finite
element methods – which are in general more precise – is that
the latter are not suitable to treat scalar and tensor quantities,
which can arise in the development of this kind of equations.
The algorithms are based on a second order central finite
difference scheme on an inhomogeneous grid, which slightly
differs from usual central finite difference in that the forward
and backward increments may not coincide:
� 1st derivative

@j
@x
ðx;yÞ ¼ 1

Dx1Dx2 Dx1þDx2ð Þ Dx2
2j xþDx1;yð Þ

	

þ Dx12�Dx22
� �

jðx;yÞ�Dx12j x�Dx2;yð Þ


þo Dxi2
� �

� 2nd derivative

@2j
@x2
ðx;yÞ ¼ 1

Dx1Dx2 Dx1 þDx2ð Þ Dx2j xþDx1;yð Þ½

� Dx1 þDx2ð Þjðx;yÞ þDx1j x�Dx2;yð Þ� þ o Dxi2
� �

where we defined Dx1 and Dx2 respectively as the forward and
backward increments along direction x, computed as the

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
1 

M
ar

ch
 2

01
6.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

E
di

nb
ur

gh
 o

n 
13

/0
5/

20
16

 1
1:

32
:2

3.
 

View Article Online

http://dx.doi.org/10.1039/c6sm00340k


This journal is©The Royal Society of Chemistry 2016 Soft Matter, 2016, 12, 3888--3896 | 3895

lengths of the grid edges. We will now refer to the derivatives
@x, @y as @m, with m = 1, 2 respectively.

The time evolution of a field f at vertex i is described by the
spatially discretized equation

:
fi(t) = Fi( f, t)

where F(f, t) is a function of f, and of time, differentiable at least
once in t, which might contain nonlinear functions of f and the
laplacian of f on the surface. The functions of f are simply
discretized by replacing f with the value fi at vertex i in the discrete
form. A deeper discussion must be done for the Laplace–Beltrami
operator – i.e. the covariant laplacian on the surface.

By using the expressions for the computation of the derivatives
given above, it is possible to derive the values of the Riemann
metric and the Levi-Civita connection on the surface as

gmn,i = @m
-
xi�@n

-
xi, Gr

mn,i = grs@s
-
xi�@m@n

-
xi,

with -
xi the coordinate vector of vertex i embedded in three-

dimensional euclidean space, and grsi the inverse of the metric
tensor. We choose as the directions m, n of derivation the edges
connecting vertex i to two consecutive points among its nearest
neighbours. Once these geometrical objects are computed for
each point and each set of directions, we can write the full
expression for the Laplace–Beltrami operator:

DLB,i fi = gmn
i [@m@n fi � Gs

mn,iqs fi].

To ensure the isotropy of the operator, an average over the
values of Fi(f, t) computed for every couple of contiguous
directions (six or five values depending on the connectivity of
the vertex) must be taken before integrating via the Adams–
Bashforth–Moulton method.32 This algorithm has been applied
to a geodesic grid obtained from an icosahedron by means of a
recursive dyadic triangulation scheme.41 In order to compen-
sate the consistently bigger error of this algorithm with respect
to its finite elements counterpart, an optimization of the grid
has been performed, treating the edges of the grid as springs
with a rest length l0 = pR/100 – where R is the radius of the
sphere – as this choice minimizes the mismatches in the
alignment of contiguous edges.42 The outcome of this relaxation
is a reduction of the errors by a factor five, which makes the
algorithm much more reliable.
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