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Abstract
We present a numerical simulation study of the dynamics of filopodial growth in the presence
of active transport by myosin X motors. We employ both a microscopic agent-based model,
which captures the stochasticity of the growth process, and a continuum mean-field theory
which neglects fluctuations. We show that in the absence of motors, filopodia growth is
overestimated by the continuum mean-field theory. Thus fluctuations slow down the growth,
especially when the protrusions are driven by a small number (10 or less) of F-actin fibres, and
when the force opposing growth (coming from membrane elasticity) is large enough. We also
show that, with typical parameter values for eukaryotic cells, motors are unlikely to provide an
actin transport mechanism which enhances filopodial size significantly, unless the G-actin
concentration within the filopodium greatly exceeds that of the cytosol bulk. We explain these
observations in terms of order-of-magnitude estimates of diffusion-induced and
advection-induced growth of a bundle of Brownian ratchets.

Keywords: filopodia growth, myosin X motors, agent-based simulations, Brownian ratchet
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1. Introduction

Cell motility is a fascinating and intricate process [1, 2].
Largely, cell motion is driven by the dynamics of the actin
cytoskeleton, a network of semiflexible polymers—the actin
fibres—interacting with molecular motors and with a number
of actin-binding proteins [2]. Actin fibres grow at one of their
ends, called the plus or barbed end, and shrink at the other,
known as the minus or pointed end. At least when cells crawl
on a 2D substrate, the mechanism through which they move
is well understood. A simplified view is that the growth of
actin fibres at the barbed end pushes the membrane forward,
while the contractility due to myosin motors, which are mainly
at the back, ensures that the cell body is dragged along [1].

4 These authors contributed equally to this work.
5 Author to whom any correspondence should be addressed.

In a more detailed description, crawling proceeds via the
rectification of Brownian fluctuations in the membrane by actin
polymerization [3]. For this to be a viable motility protocol,
there has to be sufficient ‘friction’ with the substrate for the
growing fibres to be able to push without slipping behind. In
physiological conditions this required friction is provided by
focal adhesions i.e. protein clusters which attach the cell to the
substrate [4]. Such structures are likely to be absent in three-
dimensions (3D), and it has been proposed that contractility
may have a more primary role in initiating and sustaining 3D
cell motility, e.g. within a tissue [5–7].

When a cell crawls on a substrate, it does so by protruding
a flat sheet of material packed with growing actin filaments:
this quasi-2D structure is known as the lamellipodium [1, 8].
While the lamellipodium is arguably the best documented
structure in crawling cells, there are a number of other
important actin-driven protrusions, such as actin ruffles,
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pseudopodia, podosomes and filopodia [9–19]. We will be
in particular concerned with the latter in the current work.
Filopodia are fingerlike protrusions of the cell which are
thought to be engaged in exploratory cell movements, e.g.
to sense the external environment prior to lamellipodium-
associated motion [1]. They are formed by bundles of actin
fibres, which extend and retract due to actin polymerizing and
de-polymerizing at the ends of the fibres in these bundles.
The fibre tips are protected against capping (which would
halt growth, or extension, of the filopodium) by cytosolic
proteins. The growth of the actin fibres is instead limited by
slow transport of monomeric actin to the tip of the filopodium,
and eventually by membrane elasticity which resists the large
deformation associated to the formation of these protrusions.

There have been a number of studies on the physics of
filopodia in recent years [11, 14–19]. Mogilner and Rubinstein
proposed a mean-field theory to study filopodia dynamics in
a seminal paper [11], and Monte Carlo simulations of varying
levels of complexity have been implemented [16, 19] to assess
the role of fluctuations and of actin-binding proteins. Here we
study the growth of filopodia via actin polymerization in two
different frameworks. In the first, we assume that the growth
is driven solely by the diffusion of monomeric G-actin to the
tip of the filopodium. In the second scenario, following recent
work in [15, 17, 18] we explore the possibility that myosin X
motors, which are known to be enriched at the tip of growing
filopodia, enhance the transport of monomeric G-actin to the
tip. One might expect that this second transport scenario would
lead to much faster growth of the filopodium, because transport
by advection should be, at least for large times, much more
efficient than unbiased diffusion. As was suggested in [15]
with a microscopic agent-based model, and as we show here
by numerically simulating a continuum set of equations, this
turns out not to be the case.

In this paper we work on both a microscopic and a coarse-
grained level by using, respectively, an agent-based model and
a set of continuum equations of motion. We compare the two
frameworks, both qualitatively and quantitatively, and identify
key differences in their predictions. Our main new results are
as follows.

First, we find that when the force opposing growth (which
comes from membrane elasticity) is large (10 pN or more),
then the mean-field approach significantly overestimates the
growth rate of filopodia. This is mainly due to the mean-field
theory’s failure to capture correlations between successive
polymerization events at large force, as we show by analysing
a simpler model where the concentration of G-actin is uniform.
This result is important as it points to potentially significant
limitations of mean-field theory when used to describe a bundle
of Brownian ratchets, an approach which is often followed in
the literature.

Second, our results suggest that, given commonly used
parameters for actin transport and filopodia dynamics, motors
are unlikely to be able to speed up the growth of such
protrusions by simply delivering actin monomers through
advection. To reach our conclusions we use a continuum theory
which predicts the growth dynamics of filopodia by coupling
the Brownian ratchet dynamics to the diffusion and advection

of G-actin monomers to the filopodium tip. This complements
previous work on the same topic [15] which arrived at similar
conclusions using agent-based simulations. We also explain
these seemingly counterintuitive results on the basis of simple
order-of-magnitude estimates for the diffusion and advection
induced growth laws.

Finally, we critically assess how our results may be
changed if some of our assumptions are modified. For instance
we find that, if one were to assume that the diffusion of
actin monomers in the narrow tube making up a filopodium
were significantly slower than the bulk diffusion (an order
of magnitude), then unbiased diffusion would become a
serious bottleneck for filopodial growth. In that case motor-
driven advection could help to overcome the bottleneck.
Potentially, advection could also become relevant if the G-
actin concentration within the filopodium greatly exceeded
that of the cytosol bulk, suggesting that experiments aimed
at determining that concentration would be very valuable to
make further progress theoretically.

The paper is structured as follows. In section 2.1 we
introduce the model, in section 2.2 we describe the agent-based
microscopic description of the filopodium dynamics, whereas
in section 2.3 we outline our continuum model, which is based
on a set of partial differential equations. We then discuss the
results obtained by our models in section 3, starting from the
case where the tip of the actin bundle within the filopodium
grows solely due to the free diffusion of actin from the bulk
of the cell, and then assess the relevance of potential actin
monomer transport by advection through the action of myosin
motors. Finally, our conclusions are presented in section 4.

2. Model and methods

2.1. The model

The system we consider is a growing filopodium, enclosed
within, and pushing against, a cylindrical cell membrane
(radius rcyl, see cartoon in figure 1). The filopodium is a
bundle of N actin fibres, each of which is assumed to be
infinitely stiff6 The tip of the filopodium extends via the
polymerization of monomeric, or G-actin, into filamentous, or
F-actin. Monomeric actin can either reach the tip by diffusing
within the cytosol, or, potentially, it can be recruited there
through directed transport by myosin X motors. The motors
are associated with the filopodium and we consider them to
move uniformly along the filaments at a constant velocity v (we
therefore do not directly model motors). In our framework, G-
actin monomers, in addition to diffusion, can attach and detach
from the bundle (at rate ka and kd respectively). When they are
attached, they are transported towards the tip by myosin X.
Finally, the top of the cell membrane diffuses and is subject to
a load (a force f , which in vivo comes from elastic deformation
of the membrane and viscous drag).

6 As the persistence length of a single actin fibre is about 17 μm [20], one
should note that a force of only a few pN would be enough to buckle a single
actin fibre of size 100 nm. Nevertheless our approximation of using infinitely
stiff fibres is here justifiable as the persistence length of an actin bundle is
much larger than that of a single fibre; it may scale as the number of fibres
square if these are appropriately crosslinked [11, 14].

2



Phys. Biol. 11 (2014) 016005 K Wolff et al

Δ

x

c0

kon

koff

kdka

f

rcyl

L
0

v

Figure 1. Sketch of our model for the growing filopodium inside a
cylindrical membrane (whose top, on the right, undergoes Brownian
motion against an external load f ). Symbols are defined in the text
in sections 2.1 and 2.2.

Table 1. Model parameters.

Symbol Meaning Value Reference

rcyl Radius of filopodium 100 nm [25]
N Number of fibres ∼10–30 [11]
f Membrane resistance force ∼10–50 pN [11]
kBT Thermal energy 4.1 pN nm [3]
δ Actin monomer half-width 2.7 nm [3]
D G-actin diffusion constant ∼5 μm2 s−1 [26]
Dm Membrane diffusion constant ∼O(1) μm2 s−1

c0 G-actin concentration in 10 μM [11]
the cell body

kon Polymerization rate 10 μM−1s−1 [27]
koff De-polymerization rate at tip �1 s−1 [24]
vretr Retrograde flow velocity 10–30 nm s−1 [28]
η Geometric conversion 18.9 μM−1 μm−1 [11]

coefficient

2.2. Agent-based simulations

In this section we describe a microscopic agent-based
simulation of the model for growth of a filopodium just
outlined. This approach is useful as it can include a
relatively high level of detail, and, importantly, it incorporates
fluctuations in the G-actin density. Our purpose will be to
compare these agent-based simulations to a simplified, and
computationally cheaper, mean-field approach.

In the agent-based simulations we explicitly model G-
actin monomers diffusing freely in the 3D space within the
filopodial protrusion. This is done by attempting, at every
time step, to displace monomers randomly by a distance
chosen uniformly between −δl and δl along each dimension.
The resulting diffusion coefficient is equal to δl2/(6δt) (see
e.g. [21]), where δt is the time step. In the simulation, the
monomers are taken to be point particles (in other words we
neglect the steric interactions between two G-actin monomers
or between a G-actin monomer and an F-actin filament).

The filopodial protrusion is assumed to be cylindrical with
constant radius rcyl and a flat top. Monomers can enter and
leave this cylinder only via the base. At the base, the G-actin
concentration is held constant at the bulk value c0 (∼10 μM,
see table 1)7, while there are no flux boundary conditions on
the lateral and top surfaces of the cylindrical filopodium.

7 This boundary condition requires inspection of the local concentration at
the base, and injection of monomers when this concentration falls below c0.

A G-actin monomer that diffuses up to the leading edge
of the filopodium can polymerize to become F-actin, if there
is a large enough gap between the fibre tip and the top
membrane. In order for polymerization to occur, the distance
between the G-actin monomer and the tip of one of the F-actin
filaments must be smaller than an appropriate ‘polymerization
radius’ (similar concepts arise when simulating stochastic
chemical reactions, see [22]). We also introduce a probability
of polymerization, with which a G-actin monomer within
the polymerization range becomes part of the extending F-
actin filament. The polymerization radius and probability are
calibrated so as to give a steady-state polymerization rate,
for a fixed G-actin concentration within the filopodium, in
agreement with the experimental rate of kon = 10 μM−1s−1.
This is ensured by choosing a polymerization radius δpol = 0.5
and a polymerization probability ppol = 0.00917 (both in
simulation units).

The top membrane of the protrusion also diffuses. To
simulate this stochastic membrane motion we postulate that
the top undergoes a random walk against an opposing force
f which represents elastic restoring forces. We use the
Metropolis algorithm [23], so that we always accept trial
membrane displacements towards the cell body (as long as
they are not impeded by fibres of the filopodium) but only
accept membrane displacements away from the cell body with
probability exp(− f |�x|/kBT ), where �x is the displacement
along the positive x direction. The opposing force takes a
value f ∼10–50 pN, estimated e.g. in [11]. Our agent-based
simulations essentially follow a kinetic Monte Carlo scheme,
which disregards hydrodynamic interactions. Monomers and
membrane therefore diffuse independently and there is no
dragging of monomers due to the moving boundary. This is
justified by the negligible effects of the flow field, v, due to
the moving membrane compared with the diffusion of actin
monomers (as the Peclet number vσ/D � 1, where σ and D
are the G-actin size and diffusion coefficient respectively).

At the growing tip of the filopodium we also model F-
actin depolymerization: at a rate koff � 1 s−1 (realistic in vivo
[24]) the last actin monomer turns into diffusing G-actin.

We simulate only the growth of filopodia, not the first
emergence of protrusions from the cell body, and therefore
start filopodia at a finite length of Lstart. Finally, we model
the retrograde flow by retracting the fibres by one F-actin
monomer every fixed number of time steps thereby losing one
actin monomer from the base.

As for length and time scales in the simulations, we use the
G-actin monomer width of �x = 5.4 nm to set our simulation
length scale8. The time scale is set by the ‘Brownian time’
over which G-actin diffuses its own size, τ = �x2/(6D),
where the diffusion constant is D = 5 μm2 s−1. We choose
a simulation time step of �t = 0.04 τ . An overview of the
model parameters and references can be found in table 1.
Note that to simulate membrane diffusion we use a maximum
step size equal to 0.1 (in simulation units), corresponding to
a diffusion coefficient Dm = 1.25 μm2 s−1. This value is
reasonable for an object of the size of the filopodium diameter,

8 Because of the way the actin monomers are stacked in the actin fibre, this
only grows by δ = 2.7 nm = 0.5 �x upon addition of a G-actin monomer.
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in an aqueous (rather than an intracellular) environment. In
reality, the effective viscosity of the medium into which the
filopodium grows may well be larger; however, our results
are qualitatively unchanged provided that membrane diffusion
remains fast with respect to actin polymerization. This is
true if the dimensionless ratio c(L) konδ

2/Dm � 1 at all
times, where c(L) is the G-actin concentration at the tip.
This condition is realistic for filopodia under physiological
conditions. Moreover, the condition is necessary for the ratchet
equations [3] to hold.

Our filopodium is made up of a bundle of static rigid
fibres, and for simplicity these are imagined to be anchored
to the underlying cytoskeletal mesh, so that the origin of the
filaments does not move9. Therefore, in principle, it matters
where each fibre is initially positioned with respect to the base
of the filopodium. Placing all the fibres in exact alignment leads
to stalling at an artificially small value of the force, because
all fibres in the bundle ‘lock’ at the same distance from the
membrane top and the membrane would have to be displaced
by an entire monomer half-width to allow polymerization. This
is unphysical as in reality the actin filaments can displace and
bend to accommodate growth at the end [29–31]. To overcome
this problem, we placed the fibres within a distance � of
the base. We found that spacing the fibre roots uniformly in
[0,�] and choosing � = δ, the size of the increment of an
F-actin filament, leads to the fastest growth, therefore, we have
chosen these settings. This choice of parameters reproduces the
stalling force predicted by the mean-field continuum model
which we discuss below. Positioning the fibres randomly
leads to the same stalling force, and to qualitatively similar
results as the ones reported below, although the growth rate is
quantitatively lower.

2.3. Continuum mean-field equations

In this section we introduce a continuum model to which the
agent-based simulations may be compared. We propose the
following set of partial differential equations for the dynamics
of a growing filopodium:
∂ca

∂t
= −v

∂ca

∂x
+ Nkacd − kdca (1)

∂cd

∂t
= D

∂2cd

∂x2
− Nkacd + kdca (2)

∂L

∂t
= δ

[
kone−β f δ/Ncd(L) + vca(L)η

N
e−β f δ/N − koff

]
− vretr

(3)

where ca(x, t) is the concentration of advected G-actin, cd (x, t)
is the concentration of diffusing G-actin and L is the filopodium
length. We note that similar equations have appeared in [11,
16, 17], although the coupling between ratchet dynamics and
simultaneous advection and diffusion of G-actin is new to our
approach.

9 We expect that allowing fibres to diffuse under the action of a spring
which links them to their origin (to mimic entanglement or attachment to
the cytoskeletal mesh) will not change our main results qualitatively. This is
supported by selected simulations within the simplified model of section 3.2.

The first, equation (1), represents the advective transport
of G-actin and v is the motor-induced advection velocity along
the filopodium. The second and third terms on the right-hand
side of equation (1) represent attachment of free G-actin to
each of the N fibres with rate ka and unbinding of attached G-
actin with rate kd. The factor Nka reflects the fact that diffusing
actin can attach to a motor on each of the N fibres in the bundle.

Equation (2) represents the diffusive transport of free G-
actin, where D is the diffusion coefficient of free G-actin in the
cytosol. Again, the second and third terms on the right-hand
side represent attachment of free G-actin and unbinding of
attached G-actin.

The last of the equations (equation (3)), is the ratchet
equation for filopodium growth. The terms in the square
brackets represent growth and shrinkage from processes at
the tip whereas the term −vretr represents shrinkage due to
the filopodium retrograde flow. At the filopodium tip, kon

and koff are the on and off polymerization rates for the
interaction between G-actin and the filopodium actin filaments
(which are assumed to be uniformly covered with myosin X
motors) and vca(L)η is the polymerization rate from advected
G-actin. For convenience, we write the latter rate in terms
of η, a dimensional factor, equal to ∼18.9 μM−1μm−1 [11],
which transforms densities per unit volume into densities
per unit length of the filopodium. The polymerization rate
kon and vca(L)η are multiplied by the Boltzmann factor
e−β f δ/N , β = 1

kBT , with kB the Boltzmann constant and T the
temperature, and f δ/N is the energy cost of extension against
the constant opposing force f of the resisting membrane. We
take δ, the size of the increment of an F-actin filament, to
be equal to 2.7 nm, half the size of a G-actin monomer.
Note that in the ratchet equation for L(t), equation (3), the
increase in the length of the filopodium comes from two
separate additive terms that correspond to the diffusing and
advected populations. While the first term which comes from
diffusion is standard [11], the second, advection contribution
is new—note that the increase due to advection is inversely
proportional to the number of fibres, as we need N advected
monomers to increase the whole filopodial length by the size
of an actin monomer. The advection contribution follows from
assuming that monomers extend the filopodium as soon as
they are advected to the tip. In principle one might include a
reaction rate for this process, but this would not qualitatively
affect our results. We also highlight at this point the mean
field ‘load sharing’ approximation in equation (3), according
to which the growth of a bundle can be written by mapping
kon,off → Nkon,off, δ → δ/N in the equation valid for a single
fibre [11, 12, 14]. As we shall see, this approximation may
lead to discrepancies between the continuum theory and the
agent-based simulations. We will further discuss this fact in
section 3.2.

We consider the following boundary conditions:

ca(x = 0, t) + cd (x = 0, t) = c0 (4)

ca(x = 0, t)

cd (x = 0, t)
= Nka

kd
(5)
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−
[

D∂cd(x, t)

∂x

]
x=L(t)

= N

η
[koncd (L)e−β f δ/N − koff], (6)

where c0 is the bulk concentration of G-actin, 10 μM.
At x = 0, i.e. at the base of the filopodium, boundary

condition (5) states that the advected and freely diffusing
populations are in equilibrium and boundary condition (4)
states that the total density is the typical bulk concentration of
G-actin. This choice of boundary conditions has previously
been made in the literature in [15], where it was argued
that this boundary condition is most consistent with existing
experimental data. An alternative choice of boundary condition
would be to fix cd (0), rather than cd(0) + ca(0), to c0, and
to take ca(0) to be proportional to N, as more filaments
provide more binding sites. However, this would also require
the G-actin density in filopodia to be several-fold larger than
in the bulk, a fact which has not been reported to date to
our knowledge. This alternative choice of boundary condition
would modify our conclusions and we will discuss it again
in section 3.4 when we comment on the implications of our
results for the growth of filopodia in presence of myosin X
motors, but we believe it to be less realistic than the boundary
conditions in equations (4) and (5).

On the other hand, the boundary condition equation (6) at
L(t), i.e. at the tip of the filopodium, states that there is a sink
for the diffusing G-actin, due to polymerization. This sink term
is formally the same as the purely diffusive term proposed in
the previous work [11, 15], which comes from our assumption
(discussed above) that the exit flux of advected actin at the
tip of the filopodium is ve−β f δ/Nca(L) (hence drops out of the
equation for the diffusing G-actin sink).

Note that we do not include any exclusion interaction
between the motors. The exclusion interaction has revealed
interesting properties in a number of molecular motor
systems on dynamic filaments e.g. fungal hyphal growth [32],
elongating actin filaments [33] and extraction of membrane
tubes by motors [34]. In principle, we could include exclusion
by turning the advection equation into a Burgers equation
with a reaction term—as was incorporated in recent work
on filopodia [17] for the density profiles of motors on actin
filaments. Our choice to not model exclusion is justified in
our context as its effects would only be important if the
concentration of bound monomer were as high as 1 per filament
per 5 nm (corresponding to 50% of the filopodial length
being associated with advected G-actin). This requires, for a
filopodium made up of ten fibres, a 200 μM concentration of G-
actin, which is far above the typical bulk G-actin concentration
(around 10 μM) considered in our calculations.

Finally, we note that we can estimate the maximal
length of the filopodium from the above equations, under
the assumption that there is no advection (we follow exactly
the same procedure used in [16], repeating the intermediate
steps for the reader’s convenience). We assume that the density
profile in the steady state will be a linearly decreasing function
of x, and the gradient can therefore be reasonably approximated
by:

∂c

∂x
� c(L) − c0

L
. (7)

(This assumption is backed up by observations of density
profiles in numerical simulations of equations (1) and (3).)
We then use the boundary condition at the tip to derive an
expression for the actin concentration there, c(L):

c(L) = LNkoff + c0Dη

Dη + LNkon exp(− f δ/NkBT )
. (8)

Substituting this result into the equation for L(t) and requiring
dL/dt = 0 yields the steady state, or maximal, length:

Lmax = Dη

Nkon

[
δkonc0

vretr
−

(
δkoff

vretr
+ 1

)
e

f δ
NkBT

]
. (9)

Using the values in table 1, we find the maximal length to
be ∼1–10 μm.

3. Results

3.1. Filopodia growth in the absence of motors: comparison
between agent-based and continuum models

In this section we compare the results obtained from numerical
integration of equations (1)–(3) (which we refer to as
the continuum mean-field theory), with those from agent-
based simulations in the absence of motors. This will help
to understand whether the mean-field model is a good
approximation for the system it attempts to describe and, if
so, what ranges of parameters it works well for. To this end,
we compare the filopodium growth (lengths as a function of
time) obtained with the two methods. In general, as we will
show below, the agreement is qualitatively good, at least for
physiological values of the parameters. There are however
significant quantitative differences which we will also address.

As should be expected, the agreement between agent-
based simulation and the continuum mean-field theory is best
for a large number of fibres N (see figure 2). This is due to the
effect of fluctuations, neglected in the mean-field continuum
approach, which are more significant for a small number
of fibres. Both the mean-field theory and the agent-based
simulations predict that the filopodium grows faster for an
intermediate number of fibres (see figure 2 where the bundle
of N = 10 fibres grows faster than that with N = 1 or N = 30).
This non-monotonic behaviour can be explained intuitively by
noting that for a large number of filaments the bundle needs
more actin monomers to fuel its growth. On the other hand,
growth is considerably reduced in the case of very few fibres as
the bundle is more sensitive to the action of the external force:
this effect enters through the factor of f /N in the Boltzmann
factor in the ratchet equation in equation (3) (see also
[11, 12, 14]).

Next, we investigate the effect of varying the membrane
force f at a fixed number of fibres N = 30 (a reasonable
assumption for typical filopodia in vivo [9, 11]). For small
values, f = 1–5 pN, the hindering of growth is rather minimal,
in both the mean-field and the agent-based model. When
f = 5 pN, the agent-based simulation begins to be affected
and growth is reduced. We find that the agent-based model
is affected by increasing force more strongly than the mean-
field model, leading to a marked discrepancy between the two
approaches (see figure 3).
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motors. The number of filaments is fixed at N = 30, while the
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c0 = 10 μM, and the depolymerization rate is koff = 1 s−1. The
membrane resistance force is varied. The mean-field approximation
gets worse for increasing force, where it severely underestimates the
slowing down induced by the external force.

Increasing the force further decreases the growth rate until
the stalling force is reached. The prediction for the stalling
force with N = 30 is given by equation (3) as fs = 210 pN
and both the continuum model solution and the microscopic
dynamics agree on this. The greater sensitivity of the growth
rate on the applied force in the agent-based simulation is
due to the mean-field approximation implicit in the ratchet
equation (3) i.e. in going from a ratchet equation for a single
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membrane resistance, f = 1.0, 5.0, 10.0, 20.0, 30.0, 50.0 pN. The
retrograde flow rate is also varied vretr = 15, 30, 50, 70 nm s−1.
Other simulation parameters are N = 30, koff = 1 s−1 and
c0 = 10 μM.

filament to an equation for a bundle of N filaments we have
simply replaced δ → δ/N, kon → Nkon and koff → Nkoff

(see also [11, 12, 14]). This point will be discussed further in
section 3.2.

Increasing bulk concentration c0 speeds up the growth
(data not shown), as would be expected, but has little effect
on the agreement between the mean-field theory and the
microscopic simulation.

Up to now we have neglected the retrograde flow, vretr (see
sections 2.1 and 2.2). This is not realistic as in practice actin
polymerization is always accompanied by a retrograde flow
of the network [35]. If we now introduce a non-zero vretr, we
find that the system can reach a steady state as expected from
the analysis of the continuum equation without the advection
proposed above (and paralleling that in [11]). For small values
of the retrograde flow, ∼10 nm s−1 (typically quoted in
experiments, see e.g. [35]), the continuum model predicts that
the system should take about 1000 s to reach a steady state.
For greater values, such as vretr = 70 nm s−1, employed in [11,
16] to describe filopodia emerging from a lamellipodium, the
steady state would be attained an order of magnitude sooner.
In figure 4, we compare the approximate steady-state solution
found in section 2.2, see equation (9), with the steady-state
lengths found by direct numerical simulation of the mean-field
equations—the estimate and the exact value are in excellent
agreement. We also simulated growth in the agent-based model
with retrograde flow (open symbols in figure 4). The results
reinforce our main previous finding, that for larger forces
the continuum model overestimates growth rates (figure S1,
available at stacks.iop.org/PhysBio/11/016005/mmedia) and
also, in this case, steady-state lengths.

In this section we have seen that the agreement between
the agent-based model and numerical simulation of the
mean-field model is reasonably close for realistic parameter
values. For small numbers of actin filaments the discrepancy
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between the models grows (as expected) but qualitatively the
predictions still agree. The main parameter which appears to
affect the system differently in the simulation and continuum
theory is the load force f at the filopodium tip. The agent-
based model is affected by an increased force much more than
the continuum mean-field theory, and filopodium growth at
large force is overestimated in the latter theory. Although it is
natural to attribute the discrepancy to neglect of fluctuations
in the mean-field theory, it is not directly obvious how this
actually occurs. We will investigate it further in the next
subsection.

3.2. Breakdown of mean-field theory at large load

We now examine in more detail the reasons for the quantitative
inaccuracies of the mean-field approach. The discrepancies
at low values of N can be understood as being due to the
fluctuations in the actin monomer concentration at the tip,
which are incorporated in the agent-based simulations but are
absent in the continuum equations. However, this cannot be the
reason for the breakdown we observed at large load (figure 3),
as fluctuations should not depend dramatically on the force
applied to the membrane and limiting filopodium growth.

To explore this issue further, we have performed
simulations in which the dynamics of monomeric actin is not
explicitly included, instead it is always taken to be at the bulk
concentration, c0. Therefore, the growth law of the filopodium
length, L(t), in the mean-field approximation used above obeys
a simpler equation, namely

∂L

∂t
= δ[konc0 e−β f δ/N − koff] − vretr. (10)

The agent-based simulation is run with N = 30 actin
filaments, each of which can polymerize at rate konc0 and
depolymerize at rate koff = konc0/100. We disregard retrograde
flow, and initialise the filaments with a displacement along
their direction equal to δ/N between each other—this is to
avoid the locking problem mentioned in section 2.1. The
comparison between the simulation results and equation (10)
in figure 5 clearly shows that the discrepancy is already there
at the level of a simulation which disregards any fluctuation
in the local monomeric actin concentration. The breakdown
is instead due to the approximation that having a bundle
of N fibres, as opposed to a single fibre, can be simply
taken into account by setting kon → konN in the single
fibre equation, as this assumes that all fibres have the same
chance of polymerizing. While not a bad assumption for small
f , this approximation breaks down dramatically for large
f , as the filaments essentially grow one at a time. This is
because the fibre farthest from the membrane is by far the
most likely to elongate by exploiting a gap which appears
due to membrane diffusion. Consequently, the polymerization
events in the dynamics are highly correlated and the mean-field
approximation breaks down.

3.3. Filopodia growth in the presence of motors: parameter
choices

From the numerical results in section 3.1 and figure 4, we
can see that for the realistic values of parameters the maximal

0 20 40 60 80 100 120 140
load on filopodium

1e-06

1e-05

0.0001

0.001

ra
tc

he
t v

el
oc

ity

simulations
Brownian bundle

Figure 5. Comparison between the mean-field prediction (dashed
lines) and simulations (points) for the velocity of a bundle of
Brownian ratchet, for vretr = 0 and konc0/koff = 100. It can be seen
that the mean field significantly overestimates the numerical data.
Data are shown in simulation units: one force unit corresponds to
about 1.5 pN.

length that can be supported by this diffusion-limited process
is quite small, even when neglecting the effect of fluctuations
which, as we showed in section 3.2, further limit the steady-
state length of the filopodium. There must therefore be another
mechanism that allows the filopodia to reach lengths as large as
40 μm [11]. One possibility, that we explore in this section, is
that larger lengths are made possible via the directed transport
of actin monomers by myosin motors [16, 17], which have
been associated with filopodia growth for a long time [35–37].
Whereas a long bundle will have to wait a significant amount
of time for an actin monomer to reach the tip by diffusion
alone, it might be possible that the advective transport process
will be much faster.

First we discuss the choice of parameters that we make
to study filopodial growth with motors. In particular, we
have considerable freedom in choosing the attachment and
detachment rates (ka and kd respectively). In what follows,
we for simplicity ensure (unless specified otherwise) that
Nka = kd so that cd ∼ ca at the filopodial base, which
is reasonable given the recent experimental data [38]. Note
that in [16], the authors consider a very large range of kd =
1–3000 s−1, but as we will see below, we require much smaller
values of kd in order to allow motors to aid filopodial growth.
The remaining key parameter in the advection simulation is
the motor advection, v. Myosin X is known to be a highly
processive motor, however the details of its interactions with
G-actin are poorly understood [16]. Here we will present
results with a value of v, in the μm s−1 range, which is at
the high end of the biologically relevant range [16].

In the following section, we analyse the numerical results
obtained by considering myosin-aided advection in our mean-
field theory in equations (1)–(3).

3.4. Filopodia growth in the presence of motors

We now discuss the filopodium dynamics predicted by
equations (1) and (3), when motor-induced transport is
included.
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In analogy with the presentation of the results in
section 3.1, we first consider the (physically unrealistic)
case in which there is no retrograde flow (parameters
not discussed below are set according to table 1).
Figure 6 compares growth dynamics of a filopodium
(made of N = 10 fibres) in the absence and presence
of myosin-mediated transport; while figure S2 (available
at stacks.iop.org/PhysBio/11/016005/mmedia) shows some
typical corresponding density profiles of diffusing and
advected monomers. When motors are included the initial
growth rate of the filopodium is actually slower. Although
this result may at first sight seem surprising, it is consistent
with the findings of [15], which studied a similar system with
a spatial Gillespie algorithm. The reason for such a behaviour
can be appreciated by comparing the initial growth rate coming
from diffusion and motor advection respectively. The former
can be estimated as (parameters as in figure 6)

[konc0 e−β f δ/N − koff]δ ∼ 137 nm s−1. (11)

The latter, the initial growth rate when considering also
advection, can be estimated as[

koncd (0) e−β f δ/N + vca(0) e−β f δ/Nη

N
− koff

]
δ ∼ 74 nm s−1.

(12)

Therefore, paradoxically, sequestration of G-actin monomers
by myosin X motors advecting along the actin bundle initially
slows down rather than accelerates the length growth.

By using this argument, it is straightforward to find a
criterion on the parameters for the filopodium to initially grow
faster with advection. For this to be the case, one requires:

koncd (0) + vca(0)η

N
> konc0. (13)

Using the boundary conditions (equations (4)–(6)), and re-
arranging the terms, we can find that this condition is linked
to the value of the following dimensionless number:

λ = vη

Nkon
. (14)

If λ > 1, the initial growth will be greater with motors. Using
values in table 1, we find that λ = 1 requires v ∼ 5 μm
s−1, which is unlikely for myosin X advection. We should
stress that, while equation (12) holds in general, equation (13)
exploits the assumption that ca(0) + cd(0) = c0, as used
previously in in [15]. A different boundary condition at the
base of the filopodium may therefore affect our conclusion.
In particular using cd(0) = c0 and taking ca(0) proportional
to the number of filaments N leads to an enhancement of
the growth rate by motor advection (see figure S3 available
at stacks.iop.org/PhysBio/11/016005/mmedia, where the same
value of v used in figure 6 is used). However, as mentioned
when introducing our continuum model, this assumption
would require the G-actin concentration to be several-fold
larger than in the bulk, a hypothesis for which there is no
clear evidence to date10.

In the absence of retrograde flow, as noted also in
section 3.1, there can be no steady state. Under this condition
advection eventually leads to longer filopodia, as it yields linear
growth if ca(L) �= 0, as opposed to L(t) ∼ t1/2 when diffusion
is the only transport mechanism. However, as is apparent
from figure 6, the crossover between diffusion-dominated and
advection-dominated growth occurs for unrealistically high
values of the filopodial length (around 20 μm in figure 6, even
though a rather large advection velocity, v = 0.5 μm s−1, is
assumed). These lengths are likely to be irrelevant for filopodia
in vivo, as elasticity would halt the growth much sooner.

Also when vretr is non-zero, and a steady state can
be reached, the size and growth rate of filopodia are not
significantly enhanced by motor transport for v = 0.5 μm s−1

(see figure 7). For small values of λ and of the kinetic
constants ka and kd filopodia grow longer with diffusional
transport alone, even at late times. On the other hand, advection
eventually leads to longer bundles when kd = Nka is larger
(e.g. 0.1 s−1, see figure 7). Increasing λ does lead to a dramatic
difference in the kinetics, however, as previously mentioned,
this would imply that motors move at unrealistically high
speed.

Figures 6 and 7 strongly suggest that, with a realistic
choice of parameters (see table 1), G-actin advection by
myosin X hinders, rather than enhances, filopodial growth.
It is, however, possible that the diffusion constant D = 5
μm2 s−1 has been overestimated in the literature, where in vitro
experiments might not account for the level of macromolecular
crowding occurring in vivo [39]. If this were the case, advection
might become more relevant. In figure 8, we see that with
D = 0.5 μm2 s−1 and a small detachment rate kd = 10−4 s−1,
the system with advection takes over before L ∼ 3 μm. This
represents an almost ten-fold decrease in the crossover point
from the previous case when D = 5 μm2 s−1, and shows that
given the right parameters, it might be possible for the myosin
motors to have a positive effect on filopodial growth.

10 We note here that even if ca(0)η approaches the jamming density on the
bundle (equal to about one transported G-actin monomer every 5 nm in each
filament), advection leads to an initial greater flux with respect to diffusion
for an advection velocity of v > 0.5 μm s−1 (as in figures 6 and S3). This
is still a very large value if we consider the fact that the association between
G-actin and myosin X motors may be reversible [16].
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4. Conclusions

In conclusion, we have presented a systematic study of the
growth of filopodia both in the absence and in the presence
of active transport of actin monomers by myosin motors. We
have compared the predictions of a set of continuum partial
differential equations based on a mean-field approximation to
direct simulations of an agent-based description resolving the
position of each of the fibres, of the top membrane limiting
the filopodium, and of monomeric actin diffusion/advection
within the filopodium.

Our main results may be summarized as follows.
First, we found that the mean-field theory and the agent-

based simulations are in general, qualitative agreement, but
we highlighted some significant quantitative discrepancies,
either for small bundles or for large forces acting on the
filopodium tip. The former observation is expected, and is
simply due to the neglect of fluctuations in the mean-field
theory; a similar effect has also been noted in [16]. The latter
discrepancy has a different origin, and we have shown that it
appears even in a model considering a well-stirred environment
in which depletion of G-actin monomers is not taken into
account (section 3.2). We have demonstrated that the mean-
field theory for bundles under a high opposing force breaks
down. This is because the continuum model does not account
for the fact that in the microscopic description fibres elongate
one at a time i.e. essentially it is only the fibre end farthest
from the membrane which elongates when a sufficiently large
gap appears. To the best of our knowledge, this shortcoming
of the mean-field theory had not previously been identified,
in spite of the widespread use of the ratchet equation (3) to
describe the growth of filopodia [11, 12, 14].

Second, we found that, surprisingly, with parameter values
taken from the recent literature, myosin-directed transport
of actin monomers does not effect an increase in the
growth rate and steady-state length of filopodia. This can
be rationalized quite simply on the basis of some order-of-
magnitude estimates, from which it appears that, given the
accepted values of actin diffusion, polymerization rate and
myosin X velocity, the rate of advection-driven growth is
notably smaller than that of diffusion-driven growth (unless
the filopodium is unrealistically long). However, if we assume
that crowding and confinement within the filopodial tip lead to
a smaller diffusion coefficient for actin monomers, then motors
could play a role, and lead to more efficient growth of filopodial
protrusions. Furthermore, advection would also become much
more relevant if it turned out that the total density of
G-actin, including both diffusing and bound monomers, were
much larger than the bulk intracellular concentration of actin
monomers. It would be interesting to probe this possibility
experimentally in the future.

We stress that our results in no way imply that myosin X
transport is in general irrelevant for the physics of filopodia.
On the contrary, it may well be that motor-driven transport is
necessary for molecules, such as VASP, which are involved in
the maintenance of the filopodial bundle [10]; we have simply
found that motors are unlikely to provide a mechanism for
actin monomer transport.

We hope that our results will spur further experimental
investigations of cellular filopodia and their dynamics.
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