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Biological membranes are complex environments whose physico-chemical properties are of utmost
importance for the understanding of many crucial biological processes. Much attention has been
given in the literature to the description of membranes along the z-axis perpendicular to the mem-
brane. Here, we instead consider the lateral dynamics of lipids and peripheral proteins due to their
electrostatic interaction. Previously, we constructed a Monte Carlo automaton capable of simulating
mutual diffusive dynamics of charged lipids and associated positively charged peptides. Here, we de-
rive and numerically analyze a system of Poisson-Boltzmann-Nernst-Planck (PBNP) equations that
provide a mean-field approximation compatible with our Monte Carlo model. The thorough compar-
ison between the mean-field PBNP equations and Monte Carlo simulations demonstrates that both
the approaches are in a good qualitative agreement in all tested scenarios. We find that the two meth-
ods quantitatively deviate when the local charge density is high, presumably because the Poisson-
Boltzmann formalism is applicable in the so-called weak coupling limit, whose validity is restricted
to low charge densities. Nevertheless, we conclude that the mean-field PBNP approach provides a
good approximation for the considerably more detailed Monte Carlo model at only a fraction of the
associated computational cost and allows simulation of the membrane lateral dynamics on the space
and time scales relevant for the realistic biological problems. © 2011 American Institute of Physics.
[doi:10.1063/1.3652958]

I. INTRODUCTION

Dynamics of biological membranes has been a matter
of steadily increasing interest over the past several decades.
Rapid advancement of experimental tools enables obser-
vation of subcellular structures and processes with ever
increasing spatial and temporal resolution.1 These studies
demonstrated that biological membranes are fundamentally
heterogeneous and consist of dynamically evolving domains
with distinct protein-lipid composition. The characteristic
physico-chemical properties of the membrane, such as fluid-
ity, lipid packing density, and bilayer thickness, may differ
significantly between the adjacent domains.2 It has become
increasingly clear that crucial biological processes, such as
cell signaling, membrane trafficking, and cell motility, inti-
mately depend on and themselves control the spatial hetero-
geneity of the membrane by altering its composition, cur-
vature, and electric properties. Emergence and maintenance
of membrane domains and other spatial heterogeneities de-
pend on several types of lipid-lipid, protein-lipid, and protein-
protein interactions that are commonly mediated by electro-
static and hydrophobic forces. Hydrophobic interactions that
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depend on the nature of non-polar lipid tails have received
much experimental and theoretical attention in the context of
lipid rafts3 within which saturated lipids and cholesterol seg-
regate away from the lipids with more disordered unsaturated
tails. Importantly, many proteins show preference for localiza-
tion either within or outside lipid rafts.4 For instance, mem-
brane proteins adorned by saturated lipid modifications, e.g.,
palmitoyl moieties, localize preferentially within lipid rafts.5

Another manifestation of hydrophobic protein-lipid interac-
tion known as the hydrophobic mismatch6 has been predicted
theoretically and has been shown to generate arrays of trans-
membrane proteins.7 The role of hydrophobic interactions in
the formation of membrane heterogeneities has been exten-
sively studied elsewhere and will not be considered further in
this paper.

Electrostatic forces have long been known to play a cru-
cial role in the interaction of cytoplasmic proteins and lipid
membranes.8–10 Indeed, up to 40% of lipids in the cytoplasmic
leaflet of the plasma membrane are represented by species
whose headgroups carry negative charge,11 while most of
lipid-interacting protein domains are positively charged. A
number of these lipid-interacting domains, such as PH, PX,
PDZ, and FYVE, with variable degree of specificity for par-
ticular lipid species has been described in the literature.12, 13

Many biologically important proteins, however, interact
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with the negatively charged lipids non-specifically, by
means of linear stretches of amino acid residues enriched
in positively charged lysine (K) and arginine (R).14, 15 In the
membrane-bound configuration, these polybasic domains
directly interact with the negatively charged headgroups of
lipids within the hydrated layer of the membrane. Since
this interaction is essentially independent of the rest of the
protein, short positively charged peptides, e.g., polylysine,
have been extensively studied as convenient experimen-
tal and theoretical models of the membrane-interacting
proteins.15–19 These studies demonstrated that adsorption of
charged peptides on the membrane results in lipid demixing,
with a particularly strong effect observed for the multiply
charged phosphoinositide species, such as PIP2 (−4) and
PIP3 (−5).12, 17, 20, 21 Beyond the local lipid demixing that is
restricted to the immediate footprint of the adsorbed peptide
or protein,19, 20 little is known about the role of electrostatic
interactions in the formation of spatially extended membrane
heterogeneities. Spatial segregation of the adsorbed polybasic
peptides and protein domains into a compact phase has been
experimentally observed in several in vitro systems.22 A
study by Denisov et al.9 proposed that this phenomenon is
directly induced by the lipid demixing. Subsequent theoret-
ical analyses,23, 24 however, demonstrated that such phase
segregation would also require energetically favorable hy-
drophobic interaction between the recruited lipids and, thus,
electrostatic interactions alone are not sufficient to generate a
spatially extended membrane domain. Nevertheless, the role
of electrostatic interactions in the formation of membrane
heterogeneities in vivo deserves further careful consideration.
Charged lipids can be rapidly produced at specific membrane
loci due to the highly localized activity of lipid-modifying
enzymes, such as lipid kinases and phospholipases, and de-
stroyed elsewhere on the membrane by the opposing enzymes
to prevent global accumulation of the charged lipid. Recent
advent of live cell imaging with fluorescent lipid probes
demonstrated that several charged lipid species may exhibit
highly asymmetric localization with pronounced gradients
of concentration along the membrane.25 Inspired by these
experimental observations, Kiselev et al.19 have recently the-
oretically demonstrated that the electric field generated along
the membrane surface by the gradient of charged lipid, even
if short-living, could be sensed by the adsorbed peptides or
proteins with polybasic domains. Resulting electrodiffusive
drift of the peptides was predicted to occur along or against
the lipid gradient depending on the cumulative charge of
the peptide together with the adsorbed anionic lipids. This
phenomenon with the potentially long-reaching biological
implications is further considered in the present contribution.

Despite the remarkable progress in the understanding of
individual mechanisms that contribute to the membrane het-
erogeneity, a unified theoretical model of the membrane lat-
eral dynamics has not yet been achieved.26 This could be at-
tributed in part to the largely irreducible complexity of the
membrane dynamics that involves many types of molecular
interactions and spans many orders of magnitude in space
and time. Atomistic molecular dynamics simulations repro-
duce the membrane dynamics most faithfully since they have
a potential to incorporate the entire spectrum of electrostatic,

hydrophobic, and hydrodynamic interactions in the mem-
brane. Due to the overwhelming amount of the molecular de-
tail, these simulations, however, are limited to a few tens of
nanometers in space and several microseconds in time. As the
biological processes of interest may extend over several mi-
crometers and last for seconds and even minutes, more coarse-
grained approaches are required.

Most coarse-grained treatments typically fall within the
two major categories: mesoscopic discrete particle methods,
such as Monte Carlo and Brownian dynamics, and continuous
mean-field equations. Both approaches have been extensively
used to study the adsorption of polybasic peptides and the
lipid demixing associated with it.27 Much less attention, how-
ever, has been given in the literature to the description of the
mutual diffusive dynamics of lipids and proteins. Adsorbed
protein diffusion was considered in the Monte Carlo simula-
tions by Hinderliter et al.23 and by Khelashvili et al.28 in a
hybrid model with discrete dynamics of an adsorbed peptide
and continuous evolution of the interacting lipid. Recently,
Kiselev et al.19 developed a dynamic Monte Carlo automa-
ton that was designed specifically to simulate the lateral dif-
fusion of pentalysine peptides (Lys-5, +5) on the membrane
consisting of neutral (PC, 0), negatively charged monovalent
(PS, −1) and polyvalent (PIP2, −4) lipids. The simula-
tions were performed on two parallel overlying triangular lat-
tices representing the planes of lipid headgroups and peptide
residues, respectively. While the on-lattice Monte Carlo sim-
ulations offer a number of valuable advantages, such as the
automatic satisfaction of the constraint of constant lipid den-
sity and a straightforward calculation of the electrostatic in-
teraction energy, they also have obvious limitations. Thus,
confining coordinates of all particles to the nodes of a spa-
tially periodic lattice imposes restrictions on the geometry
of the peptide-lipid interface, introduces lattice-specific arti-
facts, and makes simulation of the peptide rotational diffusion
highly problematic. Besides, the associated heavy computa-
tional costs restrict the simulated dynamics to ∼100 nm in
space and few milliseconds in time. Therefore, if the dynam-
ics of multiple protein species on the membrane with com-
plex lipid composition is sought after, further coarse-graining
towards the mean-field approximation is highly desirable.

In this paper, we derive mean-field equations governing
the dynamics of the membrane lipids and adsorbed peptides
by minimization of the free energy functional. The result-
ing equations belong to the class of modified Poisson-Nernst-
Planck (PNP) equations that have been extensively used in
the literature to describe the dynamics of ionic and charged
colloid systems. In application to biological membranes, PNP
equations have been typically derived to describe the dynam-
ics of ions in the dimension perpendicular to the plane of the
membrane, such as in the models of ion channels29 and the
description of the gap between the membrane and the under-
lying substrate.30 Here, we are concerned only with the dy-
namics in the plane of the membrane. All the involved ionic
species can be naturally subdivided into two distinct classes:
polar headgroups of lipids and peptide residues that consti-
tute the membrane Stern layer31 and the freely diffusing mo-
bile ions. Since the diffusion coefficients of the mobile ions
are approximately two orders of magnitude larger than those
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of lipids, we assume their concentrations to be described by
Poisson-Boltzmann distribution that rapidly evolves to fit the
slowly changing concentrations of lipids and peptides. This
assumption allows us to reduce the number of variables and
exclude the explicit concentrations of the mobile ions from
the equations in an approach similar to that recently developed
by Zheng and Wei.32 Since it involves solution of the coupled
Poisson-Boltzmann and Nernst-Planck equations, following
Zheng and Wei, we refer to it as the Poisson-Boltzmann-
Nernst-Planck (PBNP) model. As has been done by others,33

we utilize our earlier developed Monte Carlo automaton to
inform the continuous model development. Both approaches
are then thoroughly compared in a number of scenarios that
involve electrostatic lipid-lipid as well as peptide-lipid inter-
actions. Predictably, we find that the two methods quantita-
tively deviate when the local charge density is high since the
Poisson-Boltzmann ansatz inherently employs the weak cou-
pling approximation whose strict validity is restricted to low
charge densities.34, 35 Nevertheless, the two approaches agree
qualitatively well in all scenarios tested. We conclude that the
mean-field PBNP approach provides a good approximation
for the considerably more detailed Monte Carlo model at only
a fraction of the associated computational cost and allows ac-
counting for the lateral electrostatic interactions within the
membrane on the space and time scales relevant for the re-
alistic biological problems.

II. MODEL

A. Pure lipid membrane

The plasma membrane of biological cells has two 2–3 nm
thick hydrated layers corresponding to its inner and outer
leaflets that are separated by a hydrophobic core of ∼2 nm.
We consider the inner hydrated layer where the polar lipid
headgroups reside accessible to the soluble cytoplasmic
ions. Positively charged residues of the adsorbed polybasic
peptides and biological proteins are also located within this
layer.18 We approximate this potentially complex environ-
ment by a continuous quasi 2D medium with spatially depen-
dent concentrations of lipid headgroups ci and monovalent
soluble ions n+ and n− that satisfy the electroneutrality condi-
tion everywhere. To simplify the treatment, we first consider
the case of a pure lipid membrane without adsorbed peptides.

To construct a meaningful mean-field theory, one has to
explicitly take into account the fact that the lipids in the mem-
brane are tightly packed without appreciable voids, so that the
sum of their concentration is approximately constant—this
constraint is implicit in the lattice-based Monte Carlo mod-
els. Note that this constraint also amounts to neglecting the
differences in the lipid headgroup sizes and fluctuations in
the packing density. We thus require that everywhere on the
membrane

N∑
i=1

ci = Cm, (1)

where N is the number of lipid species including electroneu-
tral and Cm is the total headgroup concentration that corre-
sponds to the average area per headgroup of 0.6 nm2.36 The

membrane free energy functional

F =
∫

V

(u − T s) dv

then can be explicitly defined following the standard proce-
dure as follows:

F = kBT

∫
V

[
N∑

i=1

(ci log(ciV0) − ci) + n+ log(n+V0) − n+

+ n− log(n−V0) − n− +
(

N∑
i=1

zici + n+ − n−

)
ψ

− εε0kBT

2e2NA

| �∇ψ |2 − μ+n+ − μ−n−

−α

(
N∑

i=1

ci − Cm

)]
dv, (2)

where zi are the ionic valences of lipid headgroups, μ+ and
μ− are chemical potentials of free ions and V0 is a constant
that corresponds to the cube of the thermal de Broglie wave-
length multiplied by the Avogadro number NA. Note that all
concentrations are in molar units. A spatially dependent La-
grange multiplier α is introduced to enforce the dense pack-
ing condition (1). Minimizing F with respect to the non-
dimensional electrostatic potential ψ = eφ/kBT , we recover
the Poisson equation

�∇2ψ = − e2NA

kBT εε0

(
N∑

i=1

zici + n+ − n−

)
. (3)

After a further minimization of the free energy func-
tional over the cytoplasmic counterion densities n+ and n−,
as routinely done in the Poisson-Boltzmann theory, we get
that the freely moving counterions are distributed according to
the Boltzmann distribution and obtain the following Poisson-
Boltzmann equation:

�∇2ψ = 2e2n0NA

kBT εε0

eψ − e−ψ

2
− e2NA

kBT εε0

N∑
i=1

zici

that can be further simplified with the introduction of Debye
length λ

�∇2ψ = 1

λ2
sinh(ψ) − e2NA

kBT εε0

N∑
i=1

zici . (4)

Following a standard convention accepted in the
literature,19 we assume here that the free cytoplasmic ions are
represented by 0.1 M solution of a monovalent salt and there-
fore the Debye length is ∼1 nm.

Dynamics of lipids is defined by a system of mass-
conservation equations

∂ci

∂t
= −�∇Ji + Ri, (5)

where Ri are chemical reaction terms and the expression for
the fluxes Ji can be obtained from the free energy functional
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F. Indeed, differentiating Eq. (2) with respect to ci we get

μi

kBT
= μ0

i

kBT
+ log(ciV0) + ziψ − α,

where μ0
i are the standard chemical potentials of the lipid

species. Therefore, the fluxes of all lipid species can be ex-
pressed through the gradients of their concentrations, electro-
static potential and the Lagrange multiplier as follows:

�Ji = −Dici

�∇μi

kBT
= −Di( �∇ci + zici

�∇ψ − ci
�∇α). (6)

Now we can utilize the dense packing condition (1) to ex-
clude the Lagrange multiplier from Eq. (6). Indeed, summing
up Eq. (5) for all lipid species and taking into the considera-
tion that all Ri are interconversions between the species, we
get

N∑
i=1

�Ji = const, (7)

where the constant can be taken as 0. Substituting Eq. (6) into
Eq. (7) yields

�∇α =
∑N

i=1 Di
�∇ci + �∇ψ

∑N
i=1 Dizici∑N

i=1 Dici

. (8)

Finally, combining the above expressions we arrive, af-
ter some term re-arrangements, at modified Nernst-Planck
equations

∂ci

∂t
= �∇

(
Di

[(
�∇ci − ci

∑N
i=1 Dj

�∇cj∑N
i=1 Djcj

)

+ ci
�∇ψ

(
zi −

∑N
i=1 Djzicj∑N
i=1 Djcj

)])
+ Ri. (9)

Together with Eq. (4) these equations complete the
Poisson-Boltzmann-Nernst-Planck description of the electro-
static dynamics in the pure lipid membrane. Note that in the
derivation above, no assumptions have been made regarding
the relative values of the lipid concentrations ci. However,
if the concentrations of all charged lipids are small every-
where, the dynamics of the membrane reduces to that of sev-
eral dilute solutes (charged lipid) in the excess of the solvent
(neutral lipid). In this case, condition (1) can be relaxed and
Eq. (9) becomes the standard Nernst-Planck equation.

B. Membrane with adsorbed polypeptides

We now extend the PBNP description presented above
for the pure lipid membrane to the case of a single adsorbed
peptide species. While the following derivation can be read-
ily generalized, for the sake of clarity, we consider a number
of reasonable approximations that reduce the complexity of
the formalism. Since we are interested in the lateral dynam-
ics of the peptides, we do not explicitly consider adsorption-
desorption of peptides from the bulk fluid phase above the
membrane. Indeed, most of proteins with polybasic domains
have additional means of attaching to the membrane, such as

FIG. 1. Peptide-lipid complexes pi, j formed by pentalysine, and PS and PIP2
lipids. Total charge is shown in red.

lipid moieties and/or specific lipid-binding domains that ex-
tend their membrane residence time to ∼1 s or longer.37 At
the same time, our Monte Carlo simulations19 demonstrated
that the peptides respond to the lipid gradients within few
milliseconds; thus, the adsorption-desorption dynamics likely
does not play a major role on this time scale.

Adsorbed polypeptides with M positively charged mono-
valent amino acid residues and negatively charged lipids form
multiple stoichiometric peptide-lipid complexes with distinct
total charge. On a membrane with biologically realistic com-
position, this may result in a combinatorial explosion of
the number of all possible complexes, much alike the situa-
tion with multiply phosphorylated protein species or recep-
tor complexes.38 As an illustration let us consider pentalysine
(M = 5) on a ternary membrane consisting of N = 3 electro-
statically distinct lipid species: neutral (PC) with concentra-
tion c1; monovalent negative (PS), c2; and multivalent nega-
tive (PIP2, −4), c3. All 21 possible peptide-lipid complexes
together with their total charges are shown in Fig. 1. A sys-
tem of Nernst-Planck equations with the reaction terms R

p

i,j

defined by the elementary transitions shown in Fig. 1 can
be derived similar to Eq. (9) and solved in conjunction with
the lipid Nernst-Planck equations and the Poisson-Boltzmann
equation (4).

To proceed, we further reduce the complexity by consid-
ering pentalysine on a binary PC:PS membrane. In this sce-
nario, adsorbed pentalysine is represented by 6 peptide-lipid
species (see Fig. 1, top row) with concentrations pi, i = 0, M,
where the notation is simplified by dropping first index. The
condition of dense packing (1) then takes the form

N∑
i=1

ci +
M∑

j=0

jpj = Cm (10)

resulting in the additional terms dependent on pi in Eq. (8).
Here, ci are the molar concentrations of free lipids that are
not bound to the peptides. In practice, however, the charac-
teristic concentrations of proteins on biological membranes
are typically 2–3 orders of magnitude lower than the Cm.
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Leaving the case of dense protein lattices within which the
protein local concentration is comparable to the Cm for the
later consideration, in the following we assume that

∑
pj

� Cm and Eq. (9) thus remain unchanged.
Using this approximation and repeating steps (2–8) we

obtain the Poisson-Boltzmann equation

�∇2ψ = 1

λ2
sinh(ψ) − e2NA

kBT εε0

⎛
⎝ 2∑

i=1

zici −
5∑

j=0

(5 − j )pj

⎞
⎠

(11)
and additional Nernst-Planck equations

∂pj

∂t
= �∇[Dj ( �∇pj + z

p

j pj
�∇ψ)] + R

p

j (12)

that describe the dynamics of the peptide-lipid complexes and
where the reaction terms R

p

j can be explicitly defined as

R
p

0 = h1p1 − k0p0c2,

R
p

j = kj−1pj−1c2 + hj+1pj+1 − kjpj c2−hjpj , j ∈ [1; 4],

R
p

5 = k4p4c2 − h5p5. (13)

To enable the comparison of the two approaches, we de-
termine quantitative values of the association kj and disso-
ciation hj rates using our Monte Carlo model. In Ref. 19,
we observed that the charged residues of polylysines interact
with the monovalent PS lipids independently of each other.
This non-cooperative character of their interaction suggests
a simple association-dissociation model that allows us to ex-
press all kj and hj through only two empiric constants k0 and
h0 that represent the on and off rates for a single peptide
residue, respectively. Thus, in the assumption that the individ-
ual residues interact with lipids independently of each other,
for a peptide-lipid complex with m ≤ M residues bound to PS,
we obtain

km ∼ (M − m)k0; hm ∼ mh0.

To fully define the reaction rates, dense lipid packing on
the membrane should be taken into the consideration. Indeed,
dissociation of a charged lipid from the peptide-lipid complex
implies that it is displaced by a lipid molecule of another type,
in our example, neutral PC. If the membrane is composed en-
tirely of PS (c2 = Cm), the peptide residue will remain in
a complex with a negatively charged lipid regardless of the
frequent association-dissociation reactions with the specific
lipid molecules. Of several potentially applicable heuristic ap-
proaches to account for this, we chose to modify the dissoci-
ation rate, namely, we postulate

km = (M − m)k0, hm = mh0(1 − c2/Cm). (14)

Solving Eq. (11) with the reaction rates given in Eq. (14) in a
spatially homogeneous regime with varying PC:PS ratios and
comparing the results to the Monte Carlo simulations (see Fig.
2), we found that a single set of microscopic on and off rates
k0, h0 provides one-to-one correspondence between the two
approaches in a broad range of PS molar fractions.

Due to the dense packing of the membrane lipids, lateral
diffusion of protein-lipid complexes, and surrounding lipids

FIG. 2. Probability density functions of pentalysine peptide association with
PS at various PS molar fractions. Results of Monte Carlo simulations are
shown in green and the PBNP model in red.

are anticorrelated. This correlation, implicit in the on-lattice
Monte Carlo simulations, needs to be explicitly incorporated
into the membrane mean-field description constructed here.
As shown in Ref. 19 this can be readily achieved by introduc-
ing effective protein-lipid complex charges z

p

j that together
with the charges of lipids that are electrostatically associated
with the peptide also account for the charges of lipids dis-
placed by the lateral motion of the complex. Indeed, the effec-
tive charge of a single peptide residue adsorbed to the PC:PS
bilayer was shown19 to depend on the molar fraction of PS
ρ as

Zeff = 1 − p(ρ) + p(ρ) · ρ,

where p(ρ) is the probability of a peptide residue to be asso-
ciated with a PS lipid. In the notations adopted in this paper,
the effective charge of the peptide-lipid complex can be anal-
ogously defined as

zp
m = (M − m) · (+1) − m

c2

Cm

· (−1) = M − m

(
1 − c2

Cm

)
.

(15)

Figure 3 shows that the PBNP model with the z
p

j defined
by Eq. (15) provides values of the average total and effective
charges of the peptide on the PC:PS bilayer essentially iden-
tical to those computed in the Monte Carlo simulations.

C. Computational realization

The system of coupled Poisson-Boltzmann and Nernst-
Planck equations was solved in one dimension using the Flex-
PDE software (PDE Solutions Inc.) that uses finite element
method for solving partial differential equations. For simplic-
ity, diffusion coefficients of all lipids and peptide-lipid com-
plexes were chosen equal to D0 = 1mμ2/s. All Monte Carlo
simulations were performed using the 2D double-lattice au-
tomaton as described in detail in Ref. 19. To compare the
results of the two approaches, gradients of the lipid concen-
tration were induced in the Monte Carlo automaton by the
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FIG. 3. Average total (red, green) and effective charge (orange, blue) of pen-
talysine on the PC:PS membrane at varying molar fractions of PS. Monte
Carlo simulations (green, orange) show essentially the same profiles as the
PBNP model (red, blue).

reaction source-sink terms along one dimension of the lattice
and the output configurations were averaged along the other
dimension. All results of Monte Carlo simulations were aver-
aged over multiple stochastic realizations.

III. RESULTS AND DISCUSSION

A. Gradient of a single charged lipid

We first sought to assess the mean-field and Monte Carlo
approaches in the simplest scenario that involves spatial het-
erogeneity, a gradient of a single charged lipid, using PC:PS
and PC:PIP2 bilayers as models. As a preliminary step, we
considered a neutral binary system (e.g., PC:PE) with lipids
organized into the gradients of identical magnitude and op-
posite sign by the introduction of the interconversion reac-
tion terms on the domain boundaries. As expected, in the ab-
sence of electrostatic interactions, both the PBNP equations
and Monte Carlo automaton produced strictly linear steady
state lipid distributions with constant gradient. The magni-
tude of the gradient, predictably, showed linear dependence
on the source intensity providing a route to readily calibrate
both techniques. As the concentration of one lipid was kept
zero on the right boundary and the length of the spatial do-
main, L = 80 nm, was kept constant in all simulations, it is
convenient to refer to the magnitude of the gradients by the
maximal molar fraction of a lipid that is achieved at the left
boundary. Thus, we varied the source intensity to achieve the
gradients of neutral lipid in the range 5–50%.

In the gradient of negatively charged PS or PIP2 lipids,
the electrostatic repulsion contributes to the lipid flux promot-
ing the gradient dissipation. Since the electrostatic interaction
is a function of lipid density, the shape of the gradient departs
from linear (see Fig. 4). As the total lipid flux is fixed by the
magnitude of the source terms, this implies that the steady
state maximal value of the charged lipid concentration on the
left boundary is lower than the value expected for the neutral
lipid at the same source intensity. Figure 4(a) shows that for
the monovalent PS, this effect becomes noticeable from a gra-
dient of ∼20%. However, for the multivalent PIP2, this effect
is already prominent at the smallest tested gradient of 5% re-
sulting in the actual gradient with the maximal molar fraction
of only ∼3.4% (Fig. 4(b)).

(a)

(b)

FIG. 4. Comparison of the Monte Carlo simulation (green) and the PBNP
model (red) results in the scenario of a single charged lipid gradient. (a)
PC:PS membrane. Gradients shown correspond to the neutral lipid gradients
of 5%, 12.5%, 25%, and 33.5%. (b) PC:PIP2 membrane.

Comparison of the mean-field and Monte Carlo ap-
proaches shows that they quantitatively deviate at the high
local charge densities. In all simulations, the Monte Carlo ap-
proach demonstrates larger contribution of the electrostatic
interactions than the PBNP model. The Poisson-Boltzmann
approach considers interaction of the ions through the com-
mon potential field and thus neglects the ion-ion correla-
tions that become significant at high charge densities. There-
fore the PBNP model derived in this paper belongs to the
class of weak-coupling approximations that are known to fail
at high charge densities where the strong coupling approxi-
mation becomes more appropriate.35, 39 We can qualitatively
estimate the applicability of the weak coupling approxima-
tion by computing the Netz-Moreira electrostatic coupling
parameter

	 = 2πq3l2
B

(
σ

e0

)
, (16)

where q = 1 is the counterion valence and lB � 0.7 nm is the
Bjerrum length.35 Although Eq. (16) is typically associated
with the adsorption of counterions on planar surfaces, it
provides a useful dimensionless number also in our case;
hence, we tentatively use it to assess the strength of the
electrostatic coupling typical for the lateral dynamics of
lipids and peptides on the membrane. Accordingly, we set the
boundary of validity for the weak coupling approximation
as 	 � 1. Since the typical lipid density on the membrane is
∼1.67 lipid/nm2, we find that 	 � 1 for the PS molar fraction
of ∼20%. This suggests that biological membranes may be
positioned on the interface between the weak and strong
coupling approximations and thus the predictions based on
the Poisson-Boltzmann approximation should be considered
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(c) (d)

(a) (b)

FIG. 5. Interaction of two charged lipid species on the ternary PC:PS:PIP2 membrane. Results of Monte Carlo simulations are shown in green and the PBNP
model in red. (a) 5% gradient of PS interacts with homogeneously distributed 1% of PIP2; (b) 50% gradient of PS and 1% of PIP2; (c) 50% gradient of PS and
5% of PIP2; (d) 5% gradient of PIP2 interacts with homogeneously distributed 5% of PS.

with caution. Monte Carlo approach with its discrete repre-
sentation of ions, presumably, is more quantitatively precise
in the limit of high charge densities.

B. Gradients of interacting lipid species

When several types of charged lipid species are present
on the membrane, as is the case for all biological mem-
branes, formation of a gradient in the concentration of one
species could induce response in the spatial distribution of
other species. We next considered two electrostatically inter-
acting lipids with distinct valences, PS and PIP2. The gradi-
ent of concentration was produced using the reaction source
terms in the spatial distribution of the inducing lipid while
no-flux boundary conditions were imposed on the responding
lipid. The results of these simulations presented on the Fig.
5 show that a spatial heterogeneity induced in the distribu-
tion of one lipid can produce response in all components of
the system. While a weak 5% gradient in the distribution of
PS induces only very small perturbation to a homogeneous
distribution of PIP2 (Fig. 5(a)), a 50% inducing gradient of
PS significantly displaces PIP2 to the right boundary (Fig.
5(b)). Interestingly, the induced gradient of PIP2 generates
electrokinetic force that pushes PS lipids back, thus, effec-
tively increasing the PS gradient. This feedback is predictably
more prominent at the higher PIP2 molar ratio in the bilayer
(cf. Figs. 5(b) and 5(c)). As in the case of single lipid gradient,
in all tested scenarios with two interacting lipids, Monte Carlo
simulations systematically exhibited quantitatively larger ef-
fect due to the electrostatic interactions than the PBNP
equations.

C. Dynamics of a peptide in the induced lipid gradient

Earlier study based on the dynamic Monte Carlo
approach19 offered an intriguing prediction that the polyba-
sic peptides and proteins with polybasic domains can respond
to the induced lipid gradients by drifting along or against
the gradient depending on the total charge of the peptide to-
gether with the electrostatically bound lipids. Using the above
derived PBNP model extended to describe the peptide-lipid
complexes, we computed the spatial distribution of pentaly-
sine on the membrane with varied PS and PIP2 gradients and
compared the results with the Monte Carlo simulations. Fig-
ure 6(a) shows a good agreement between the two approaches
in describing the redistribution of pentalysine in the presence
of weak and steep gradients of PS.

Analysis of the interaction between pentalysine and
the multivalent PIP2 lipids demonstrated that in the Monte
Carlo automaton the individual peptide residues are not
independent of each other in their interaction with PIP2 due
to the non-negligible electrostatic repulsion between the
PIP2 lipids. Therefore, simple model (14) is not applicable
for the pentalysine-PIP2 interaction in a strict sense. To
qualitatively compare the approaches in the presence of
PIP2, we estimated the reaction rates k0 and h0 neglecting
the cooperativity of binding. Also, to reduce the complexity
we considered a bilayer consisting only of neutral PC and
PIP2 itself. Figure 6(b) shows that pentalysine placed in the
gradient of PIP2 exhibits strong repulsion by the gradient
and accumulates on the left boundary. Predictably, due to
the large negative charge of the peptide-PIP2 complexes,
the repulsive effect of PIP2 is more prominent than the
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(a)

(b)

FIG. 6. Distribution of pentalysine in the gradient of a charged lipid. Results
of Monte Carlo simulation are in green and the PBNP model in red. (a) On
the 5% and 50% gradients of PS; (b) on the 5% and 10% gradients of PIP2.

attractive effect of the PS gradient. Consistently, Monte Carlo
simulations exhibit stronger effect than the PBNB equations.

IV. CONCLUSIONS

Here, we derived and numerically investigated a system
of Poisson-Boltzmann-Nernst-Planck equations that provide
a mean-field approximation to the earlier proposed Monte
Carlo model of electrostatic interactions between the charged
lipids and proteins in the plane of the hydrated layer of a
biological membrane. To reduce the complexity of this sys-
tem, we, following other publications,31, 32 separated the ions
into two classes: the explicitly considered charged lipid head-
groups and peptide residues and mobile ions that are treated
implicitly within the Poisson-Boltzmann framework. A par-
ticular property of lipid membranes that distinguishes them
among other electrolyte-colloid systems is the dense pack-
ing of lipids. We explicitly considered this property by re-
quiring that, the fluctuations being neglected, the sum of all
lipid species concentrations on the membrane should be con-
stant. Although we do not explicitly introduce the size of lipid
head groups in our model, the condition of dense packing im-
plies their finite size. The resulting modified Nernst-Planck
equations contain additional terms that arise from this con-
dition and effectively describe cross-diffusion fluxes associ-
ated with the excluded volume effect. In this regard, our ap-
proach is similar to other treatments where the finite size of
ions was considered explicitly.40 Numerical analysis demon-
strated that the resulting correction terms become significant
only for the lipid species with molar ratio above ∼20%. This
implies that if the system of interest consists of several minor
(1%–5%) charged lipid species that are immersed in other-

wise neutral membrane, the system of equations can be sig-
nificantly simplified. With little error, charged lipids then can
be considered as dilute solutes whose dynamics is described
by regular Nernst-Planck equations and the concentration of
neutral lipid (“solvent”) computed simply from the condition
of dense packing. The advantage of the full system of equa-
tions derived here, however, is that it treats all lipids species
equally without any simplifying assumptions on their local
concentrations. Although in the present contribution we re-
stricted our consideration by assuming that the concentrations
of protein-lipid complexes are negligible compared to the to-
tal lipid concentration, this restriction can be easily lifted by
replacing the condition of dense packing given in Eq. (1) with
Eq. (10). This will become important in the description of
densely packed protein-lipid lattices, such as formed by an-
nexin A5 in the presence of Ca,41 or within other systems
where negatively charged lipids and positively charged pro-
teins segregate into distinct dense phases.9, 22

The thorough comparison between the mean-field PBNP
equations and Monte Carlo simulations demonstrated that
both approaches are in a good qualitative agreement in all
tested scenarios. Some quantitative discrepancy described
above arises presumably from the mean-field nature of the
PBNP model that ignores strong-coupling effects observed at
high local charge densities. Transition to the coarse-grained
mean-field description likely cannot be achieved without
some loss of accuracy. Larger space and time scales come
at the inevitable cost of introducing approximations that are
necessary to achieve tractability of analytical models and
computational feasibility of numerical approaches. At the
same time, high charge densities at which the PBNP approach
deviates from the Monte Carlo results are likely not observed
in the biologically realistic conditions. This is because of the
large abundance of proteins that use specific or non-specific
electrostatic interactions to associate with negatively charged
lipids. Under the realistic conditions, a large proportion
of the charged lipids would be likely found within mostly
electroneutral protein-lipid complexes that substantially
reduce the effective charge density on the membrane. Thus,
even though the total abundance of the negatively charged
lipids on the inner leaflet of the plasma membrane may reach
a staggering 40%–50%, the actual concentration of the free
charged lipids is presumably only a minor fraction of this
number. Taking this into consideration, we conclude that the
PBNP model derived here provides a promising approach
for the description of the lateral dynamics of biological
membranes on the spatio-temporal scales commensurate with
most important biological processes. Some examples of such
processes in which charged lipids are dynamically generated
in highly localized manner include, but are not limited to, the
formation of actin-rich cell protrusions such as lamellipodia
and dorsal ruffles.25 Another relevant biological process
of particular bio-medical relevance is the phagocytosis of
pathogens. During the formation of a phagosome, charged
lipid species are created and destroyed by lipid-modifying
enzymes in a rapid succession;10 therefore, during this
process the formation of transient lipid gradients is highly
likely. Understanding of these and many other biological
phenomena will require development of a computationally
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efficient continuous description of the membrane dynam-
ics. The PBNB model offered here is a step towards the
realization of this goal.
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