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1. Introduction

In the past decades, bacterial cell—cell communication has
captivated interest of a broad scientific community drawn
from a wide spectrum of disciplines including biology,
physics, chemistry, mathematics, and engineering. Extensive
exchange of experimental techniques and theoretical para-
digms resulted in burgeoning development of the field as
well as inevitable mixing of research cultures. As is often
the case when multiple disciplines address a complex
scientific problem, mathematical equations can provide a
unifying platform which synergizes the efforts. Indeed,
integration of many disparate experimental results in the form
of models that span multiple scales from molecules to
populations has already greatly benefited the field. In the
present contribution, I will briefly survey the key develop-
ments in the rapidly growing field of modeling approaches
toward understanding bacterial cell—cell communication on
a systemic level.

Complex prokaryotic metabolism generates a diverse array
of chemicals that enter the extracellular environment and can
potentially function as signaling molecules. The list of
bacteria-produced substances known to function as cell—cell
communication signals grows constantly’? and is likely to
continue expansion in the foreseeable future. Once outside
the bacterial cell, these molecules find themselves in diverse,
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often hostile, environments where they freely diffuse until
adsorbed to surfaces, chemically degraded, assimilated by
other organisms, or perceived by potential signal recipients.
Even in the absence of degradation, the intensity of this
undirected, diffusion-propagated chemical signal rapidly falls
with the distance from the signal source. Thus, success of
any cell—cell communication mediated by freely diffusing
molecules, defined as the ratio of received to the total number
of secreted molecules, strongly depends on the characteristic
cell-to-cell distance. Apart from some exceptional situations
in which bacteria might find themselves enclosed in tiny
diffusion-impermeable compartments (see section 3), this
implies that cell—cell communication becomes a significant
factor only when the local cell density reaches certain
threshold level. Not surprisingly, most of the known cell—cell
signaling and communication in bacteria is cell density
dependent. In the majority of examined systems (a few
notable exceptions have also been characterized, see e.g.,
ref 3 and discussion in section 7), the mode of bacterial
cell—cell communication is autocrine, i.e., cells capable of
producing the signal are also the cells that can receive the
signal. The received signal is directly translated into a change
in transcription regulation, the decision-making level of a
prokaryotic cell at which cell—cell communication is inte-
grated with other sensory inputs. The ability of bacteria to
regulate gene expression programs in response to autocrine
diffusible signals is typically referred to as quorum sensing,

0 2011 American Chemical Society

Published on Web 12/22/2010



Understanding Bacterial Cell—Cell Communication

which is by far the most explored mode of bacterial cell—cell
communication and, thus, is the major focus of this review.

Since its first observation in marine luminescent bacterium
Vibrio fischeri in the early 1970s,* quorum sensing (QS) has
been attracting ever increasing attention.>*~'> With the
increased availability of sequencing technologies, it became
clear that homologues of key V. fischeri QS genes are present
in the genomes of many Gram negative bacteria.® Indepen-
dently, QS has been described in several Gram positive
species, further highlighting the panprokaryotic nature of this
phenomenon. Ubiquity, cooperative nature as well as the
ecological and medical significance of QS ignited the interest
of researchers in physical and mathematical disciplines.
Being simple unicellular organisms, bacteria have a short
path from extracellular signals to gene regulation and from
switching gene expression programs within individual cells
to changing behavior of the whole populations. This opens
an unprecedented opportunity for the systems and synthetic
biology studies in which technically feasible genetic alter-
ations can be predicted in silico to produce specific behav-
ioral changes, and these theoretical predictions can then be
readily tested in vivo (see ref 13 for review and the discussion
in section 6). As a result, realistic quantitative models can
be built in a timely fashion through several converging
iterations of experimental and theoretical work. Success of
such integrated efforts has been greatly facilitated by the
design of genetically encoded fluorescent reporters and
advancement of fluorescent microscopy that nowadays permit
measurement of gene expression within individual cells.'*
Being tractable experimentally, bacteria are also attractive
targets for theoretical analyses. Thus, bacteria have relatively
well-understood modes of gene regulation and short signal-
transduction cascades frequently consisting of only one or
two levels. Small sizes of bacterial cells often permit ignoring
of spatial heterogeneity and thus reduce the complexity of
modeling the intracellular environment to ordinary dif-
ferential equations and space-independent stochastic methods.
Beyond these features, QS has an additional appeal to
theoreticians. Cell—cell communication by means of math-
ematically well-defined diffusion-mediated transport allows
for creation of spatially explicit models of whole populations
in diverse habitats. This has been achieved by using either
continuous description, such as partial differential equations,
or discrete agent-based methods. Combining mathematical
description of intracellular molecular networks with that of
population-wide cell—cell communication provides for in-
sightful multiscale dynamical models capable of predicting
outcomes of complex experiments in which both intracellular
and ecological factors are varied.

The following content is subdivided as follows. In section
2, I focus on the structure—function relationship in the
organization of quorum sensing gene networks whose
molecular details have been studied in some detail. Section
3 changes the perspective from the mechanisms of imple-
mentation to the ecological and evolutionary function of
quorum sensing. The role of quorum sensing within bacterial
biofilms is the subject of section 4, while biomedical
applications related to suppression of cell—cell communica-
tion in pathogenic bacteria are considered in section 5. A
novel field of research, prokaryotic synthetic biology that
uses controlled cell—cell communication to achieve desired
patterns of population-wide behavior, is introduced in section
6. To complement the main theme of this review, in section
7, I discuss a few known examples of cell—cell communica-
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tion that do not fall in the wide category of quorum sensing
phenomena. Finally, some unsolved problems and potential
future directions are highlighted in section 8.

2. Quorum Sensing Gene Networks: From Design
to Function

Experimental and theoretical accessibility of QS made it
a subject of choice for studies on environmentally regulated
gene networks. One common theme that motivated much of
the work in the field is how the architecture of the quorum
sensing gene network (QSN) translates into its function as a
sensor and an element of bacterial decision-making machin-
ery. A host of associated questions has been raised and
vigorously discussed in the literature. Is QSN a true switch
with distinct “on” and “off” states? Which elements of the
QSN are responsible for the switch-like behavior? What
defines the critical level of extracellular signal that turns QSN
on? How does this critical level of signal translate into the
bacterial density and, indeed, how many cells constitute a
quorum? How do QSNs operate in the conditions of extreme
molecular noise that stems from the microscopic size of a
bacterial cell? These and other questions focusing on
biochemical and biophysical properties of QS necessitated
the use of quantitative modeling and, in fact, have been found
particularly amenable to the combined experimental-theoreti-
cal analyses.

2.1. Are Quorum Sensing Networks “Switches”
or “Rheostats”?

All components of so far characterized QSNs can be
attributed to three broadly defined functional groups: (1)
signaling molecules, termed autoinducers (Als), their syn-
thases and machinery for Al processing and secretion; (2)
optional Al receptors, signal transduction elements and
intermediate transcription regulators; (3) QS transcription
regulators (QSTRs) - master transcription factors that control
expression of target genes. As the main goal of the QSN is
to regulate the copy number of QSTR(s) in response to the
extracellular concentration of the AI(s), its physiological
activity can be insightfully characterized by the shape of the
QSTR(AI) dose—response curve. The network may operate
as a rheostat (see Figure 1A,B) by gradually increasing the
copy number of the transcription factor. This behavior is
typically characterized by an S-shaped curve exhibiting a
range of Al concentrations within which the QSN responds
to the stimulation with Al Curves of this type are commonly
fitted to the Hill function of the form

A x X"

B+ x"

If the Hill coefficient n is greater than 1, the behavior is
often said to be “ultrasensitive”!® as shown in Figure 1B.
Importantly, in this regime, the network has only one possible
output for each input value and the S-shaped curve has a
positive slope everywhere. Alternatively, the QSN may
exhibit bistability with two disjoined branches of stable
steady states, often referred to as “on” and “off”, which are
separated by experimentally undetectable unstable state.'® In
this scenario shown in Figure 1C, QSN operates as a true
genetic switch and the cells are expected to be found in either
the uninduced “off” state or the fully induced “on” state.
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Figure 1. Characteristic shapes of dose—response curves observed
in gene regulatory networks. (A) Gradual response with Hill
coefficient n = 1 corresponds to the standard Michaelis—Menten
curve. (B) Ultrasensitive rheostat-like response, n > 2, is character-
ized by a typical sigmoid curve that remains a single-valued function
of the stimulus even at very large n. (C) Bistable behavior is
represented by two branches of steady states separated by an
unstable state branch (dashed line) within the stimulus interval
shown by two dotted vertical lines.

This sets it apart from the first case in which the majority of
the population is likely to exhibit intermediate expression
levels.

Gram negative QSNs discovered early in the history of
the QS research, such as the paradigmatic luxR/I network
characterized first in V. fischeri, seemed to present a
particularly simple design. Indeed, QSTRs of the LuxR type,
as many other bacterial transcription factors, are also
simultaneously receptors for their cognate signaling mol-
ecules, N-acylhomoserine lactones (AHLs).!” AHLs are
synthesized from commodity cellular metabolites by several
enzyme classes, of which LuxI is the best characterized.'®"
Despite intracellular localization of their receptors, cell—cell
communication with AHLs is possible because most AHLs
can freely diffuse in and out of the cell through both
membranes and the cell wall. However, additional QSN
elements, such as efflux pumps, might be required if AHL’s
passive diffusion transport is hindered by their long acyl
chains (>10).%°

The luxR/I type of QSN, the layout to be first thoroughly
analyzed experimentally, became also the testbed for the
development of modeling approaches directed at quantitative
understanding of QS (see Figure 2 and box 1 in ref 21 for
details and definitions). The network’s fundamental property,
a positive feedback loop by means of which Al enables
transcriptional activity of the QSTR that, in turn, positively
regulates the Al synthase (Figure 2A), has been proposed
as the first mechanistic explanation of the QS phenomenon’
and, not surprisingly, became the focus of the early modeling
efforts. In mathematical disciplines, existence of positive
feedback has long been known to be a necessary condition
for bistability.'®?? Two studies, by James et al. on luxR/I
QSN in V. fischeri®* and by Dockery and Keener on lasR/I
network in Pseudomonas aeruginosa,”* for the first time
applied the language of ordinary differential equations to
formulate mechanistic assumptions underlying the purported
functionality of the [uxR/I-type network. Both studies
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Figure 2. Layout of the classical luxR/I QSN with known
variations. (A) A commonly reported layout with QSTR dimer-
ization and single positive feedback loop. (B) Layout without
dimerization but with two positive feedback loops was the first to
be considered theoretically.”>** (C) Presence of QSTR dimerization
and second positive feedback loops together was shown to provide
increased robustness of QSN switch-like behavior to noise.? (D)
The irreversibility of the QSTR formation was proposed to
necessitate an additional negative feedback loop based on the
antiactivator TraM in A. tumefaciens QSN.?” Protein species are
shown as ovals; R, luxR-type QSTR; I, LuxI-type Al synthase;
AAI, Agrobacterium Al. Reactions of complex formation are shown
by open boxes, @ symbolizes degradation, and catalytic action of
LuxI enzymes is depicted by open circle-ended arrows.

concluded that, in principle (due to the absence of experi-
mentally measured network parameters the analyses had to
remain qualitative), the network layout permits bistability
with distinct “on” and “off” states. These results suggested
a tantalizing possibility that the luxR/I-type QSN comprises
a true genetic switch and inspired a number of efforts
attempting to predict bistability in other QSN layouts in silico
and find experimental evidence for or against this phenom-
enon in vivo.

It is, however, important to note that the existence of the
“classical” positive QS feedback loop from LuxR to LuxI
does not by itself necessitate the emergence of bistability.
On the contrary, using simple kinetic reasoning,?"? it can
be readily shown that the “bare-bone” network with a single
positive feedback loop and monomeric transcription factor
cannot be bistable with any combination of network param-
eters. Thus, network elements additional to the classical
positive feedback loop are required to enable bistable
behavior of the luxR/I-type network. Goryachev et al.?
systematically addressed this question and concluded that
either dimerization of the QSTR or an additional positive
feedback loops are required to achieve bistability (cf. Figure
2A—C). Interestingly, both original studies®*?* that suggested
bistability of the luxR/I-type QSN in two different micro-
organisms explored the same scenario in which a monomeric
QSTR positively regulates the Al synthase and itself as
shown in Figure 2B. Thus, hypothesized positive autoregu-
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lation of the QSTR provided second, additional positive
feedback loop that brought about bistability.

Providing some support to the bistability hypothesis, ample
evidence exists that many LuxR-type QSTRs operate as
dimers. Moreover, activator-type LuxR homologues have
been shown to become dimerization-competent only upon
binding their cognate AHLs.?*?’ Dimerization, in turn,
enables these QSTRs to bind upstream cis-regulatory ele-
ments of the target genes and activate their transcription.
Even P. aeruginosa LasR, assumed monomeric in early
modeling studies,?**® more recently was shown to be dimeric
in vitro®® and is likely active as a dimer or higher-order
oligomer in vivo.*® Evidence for the existence of additional
positive feedback loops has also been presented in some
systems. Thus positive autoregulation has been reported for
QSTRs carR in Erwinia caratovora,®* traR in Agrobacterium
tumefaciens,” and lasR in P. aeruginosa.’*3* Originally
described in ref 35, positive autoregulation of V. fischeri [uxR
has been revisited recently by Williams et al.*® In an elegant
study, they combined theory and experiment to provide
additional evidence in support of [uxR positive autoregulation
and the existence of bistability in the classical luxR/I network.

Fundamental limitation for the luxR/I-type network layouts
is the requirement for the relative instability of the QSTR
dimer and reversibility of the QSTR-AI interaction.’’” Indeed,
due to the constitutive intracellular production of Al and
translation of the QSTR, strong interaction between the
monomeric QSTR and Al followed by largely irreversible
QSTR dimerization could result in undesirable network
“short-circuit”—accumulation of active transcription factor
and eventual transition to the induced state even in the
absence of cell—cell communication. One possible evolu-
tionary solution avoiding this “runaway’” activation is to keep
the interactions between the QSTR and Al and between the
two Al-bound QSTR monomers weak. This assumption,
implicitly made in the majority of luxR/I-type network
models, has been experimentally confirmed in some species®
but clearly disproven in others. Perhaps the best characterized
counterexample is provided by the quorum sensing system
of Ti plasmids in A. tumefaciens® in which QSTR TraR
forms essentially irreversible complex with its cognate Al
during translation.”® Moreover, if translated in the absence
of Al, TraR is poorly folded and insoluble. Experiments in
A. tumefaciens identified a protein, TraM, whose deletion
resulted in constitutively induced QSN state.*® Paradoxically,
TraM was found to be positively regulated by the very
TraR.** Modeling analysis of the traR/I network by Gory-
achev et al.*’ resolved this seeming contradiction and
demonstrated that TraR—TraM negative feedback loop
shown in Figure 2D is indeed the network element that
enables sensing extracellular Al despite the irreversible
interaction of QSTR TraR with its Al This study also
predicted bistable, switch-like mode of operation for the
traR/l QSN. Interestingly, P. aeruginosa LasR was found
to bind its cognate Al 30C12-HSL with picomolar-range
dissociation constant while LasR, translated in the absence
of Al, was largely insoluble.? These features, reminiscent
of TraR and its interaction with the cognate Al, suggest that
mechanisms similar to those characterized in A. tumefaciens
might be at play in the highly complex QSN of P.
aeruginosa.

Although V. fischeri-type luxR/I network remains probably
the most popular example of QSN, many more network
layouts have been discovered and characterized to various
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Figure 3. [uxR/I QSNs of Gram negative bacteria belong to two
distinct classes with different genomic layout and mode of
regulation (see text). A complex regulatory pattern described in
Yersinia pseudotuberculosis has been attributed to the interaction
between its two sequentially connected class B QSNs.** Arrowheads
represent transcriptional activation, and hammerheads represent
repression. Elements reported only in some organisms are shown
by dashed line. Open arrows indicate QSTR genes, and gray arrows
depict Al synthase genes.
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degrees of detail (see refs 21 and 41 for recent reviews on
the QSN architecture and design principles). Analyses of
luxR/I homologues in some y-proteobacteria demonstrated
that despite sequence similarity with V. fischeri genes, their
functional mode of operation is fundamentally different,
warranting separation of these QSN into a distinct functional
class®'#? that is also characterized by different genomic
organization as shown in Figure 3. QSTRs of this network
type (class B) are generally dimeric repressors that negatively
regulate transcription of their target genes in the absence of
their cognate Als. Binding to the Als induces conformational
changes that reduce affinity of the QSTRs to DNA and
relieves repression of the target genes in the state of quorum.
These QSTRs frequently repress themselves, but in the most
reported cases, they do not regulate the respective Al
synthases.*? Therefore, mechanisms based on the “classical”
positive QS feedback loop and positive autoregulation of
QSTRs characterized in V. fischeri-type (class A) networks
are not applicable to this class of QSNs. Although complex
regulatory patterns have been suggested by some studies*
(see Figure 3), more experimental and theoretical work is
required before their mode of operation can be fully
understood.

Of other functionally distinct QSN layouts in Gram
negative bacteria, perhaps the best characterized are networks
of Vibrio species. QSTRs LuxR in V. harveyi (not related
to V. fischeri LuxR) and HapR in V. cholera belong to a
large family of TetR transcription factors. They do not bind
Als but instead are regulated by sRNA species downstream
of the cell-surface Al receptors.***’ Intricate architecture and
functional principles governing Vibrio QSNs have been
unraveled recently in a series of insightful papers by Bassler
and colleagues (see refs 46—49 and the discussion in section
2.3).

Cell—cell communication in Gram positive bacteria mostly
relies on genetically encoded autoinducer peptides (AIPs). !
Translated as precursors, these peptides are proteolytically
processed and extruded into the extracellular space by
enzymes positioned in the cell membrane. Reception is
achieved by either transmembrane receptor histidine-kinases
or through transporter-facilitated import into the cell where
peptides are recognized by intracellular receptors, such as
Bacillus subtilis phosphatase Rap.> Prototypical example of
a peptide-based Gram positive QSN is provided by the agr
system in Staphylococcus aureus,> which is schematically
shown in Figure 4A. The agr operon encodes the messenger
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Figure 4. Known and hypothesized QSN layouts of Gram positive
bacteria that were predicted to exhibit bistability. (A) agr operon
of S. aureus is autoregulated by the QSTR AgrA that also activates
transcription of the regulatory RNA species rnalll. (B) A complex
regulatory layout that has been suggested to function in S. coelicor.%
Open arrows indicate QSTR genes, and gray arrows depict other
regulatory genes.

molecule AgrD (precursor), processing enzyme AgrB, trans-
membrane histidine kinase AgrC, and the response regulator
AgrA. Once phosphorylated by receptor AgrC, AgrA acti-
vates transcription of the agr operon and that of the
regulatory RNA species, RNAIII, which serves as the
ultimate effector of the QSN instead of AgrA. The ingenuous,
functionally economical design of the agr QSN with three
overlapping positive feedback loops (AgrA positively regu-
lates AIP, AIP receptor and itself) suggests complex non-
linear behavior of the network with a potential for bistability.
Indeed, Gustafsson et al.>* modeled the dynamics of the agr
network and theoretically predicted its bistable character. A
later work by the same group addressed regulation of genetic
competence (ability to incorporate exogenous DNA) by the
com QSN in Streptococcus pneumoniae.> In addition to
predicting bistability of the com QSN, they also suggested
that a negative feedback loop may be responsible for the
experimentally observed oscillatory onset of competence. The
dynamics of the S. aureus agr operon was recently revisited
from a more mathematical viewpoint by Jabbari et al.>
Increasing number of studies in prokaryotes characterize
QS systems that rely on molecules other than AHLs or
peptides to convey messages between the cells. These include
quinolones,” fatty acid methyl esters,”® and DSF (cis-11-
methyl-2-dodecanoic acid)® in Gram negative species and
y-butyrolactones® in Gram positive. In addition, both types
utilize a family of furanones, collectively known as AI-2,°!
for interspecies, pan-prokaryotic communication.®” Modeling
analyses of AI-2 network in E. coli have revealed significant
complexity of AI-2 production and uptake® % and suggested
that AI-2 may play multiple roles in bacterial physiology.
While experimental characterization of the majority of these
systems is presently incomplete, in some cases it is neverthe-
less sufficient to initiate mathematical modeling that gener-
ates insightful experimentally testable predictions. Mehra et
al.% have recently analyzed y-butyrolactone-regulated QSN
(see Figure 4B) that controls antibiotic production in Strep-
tomyces coelicor. Similar to the agr operon in S. aureus,
the “classical” functional role of the QSTR is split between
two entities (proteins in this case), CpkO, that activates
transcription of target cpk gene cluster, and ScbR that
participates in the Al-mediated QS regulatory loops. In a
layout analogous to that of class B luxR/I QSNs, transcrip-
tional regulator ScbR controls expression of the target genes
by repressing cpkO, the amplifier schbA and itself. Presumed
functional role of ScbA is, however, unique, as it is
hypothesized to be both an enzyme involved in the synthesis
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of y-butyrolactone SCB1 and also a regulatory protein that
activates its own transcription by forming a complex with
ScbR. At high concentrations, SCB1 binds to the C-terminus
of ScbR and induces its dissociation from DNA. This leads
to derepression of scbA and increased production of ScbA
and SCBI. Presumably, as more copies of ScbA become
available, more ScbR molecules form activatory ScbR*ScbA
complexes. Interestingly, because ScbR is an autorepressor,
transcription of scbR is derepressed concomitantly. However,
in the presence of SCBI1, the repressor role of ScbR is
switched to that of activator by forming the complex with
ScbA. Mehra et al. predicted that this ingenuous QSN design
functions as a bistable switch, however, more experimental
work is required to substantiate the mechanistic assumptions
of their model and test its predictions. A recent study by
Brown bravely ventured into the almost unchartered waters
of the Gac/Rsm networks.®” This regulatory motif that
consists of the two-component GacS/GacA element and the
protein—RNA RsmA/RsmB module has been characterized
in several microorganisms and is known to be involved in
QS in the context of the class B expR/I QSN in E.
caratovora.”"%® Using detailed deterministic and stochastic
modeling, Brown, however, demonstrated that this motif on
its own can explain QS behavior in Pseudomonas fluorescens
and predicted bistability in this newly characterized QSN
layout.

Relative to the abundance of in silico predictions of
bistability in a variety of QSN layouts, there is paucity of
experimental studies testing the existence of bistability in
vivo. In part, this can be attributed to the technical challenges
of performing expression essays with single-cell resolution.
Modeling of the transition to quorum on a population scale
using stochastic agent-based simulation environments®”%
suggested that individual cells undergo the transition at
widely varying concentrations of extracellular Al. A recent
study in V. harveyi used fluorescent microscopy with single-
cell resolution and was indeed able to detect this population-
wide behavioral heterogeneity.”® Thus transition to quorum
by the entire population is spread over a range of cell
densities, and any experimentally measured population-
averaged value will inevitably report gradual, rheostatic
transition even in the presence of intracellular bistability. To
circumvent population averaging, a fluorescent reporter is
inserted genetically downstream of the promoter of interest
and the activity of the reporter is then recorded at various
cell densities and concentrations of the exogenously added
Al on a cell-by-cell basis. Bimodal distribution of cellular
fluorescence intensity, corresponding to the distinct sub-
populations of cells in the “off” and “on” states, is taken as
a proof of bistability”' (however, see ref 72). Using this
approach, Waters and Bassler*® investigated response of V.
harveyi QSN to various Als and their combinations and
found no evidence for bistability. Instead, they found a
clearly unimodal distribution indicative of the rheostatic
mode of QSN operation. In support of this conclusion,
Bassler and colleagues recently provided additional evidence
by measuring single-cell dose—response curves of LuxR
copy number that exhibited typical rheostat-like profile.”?
Moreover, the value of Hill coefficient, n =~ 1, found in these
experiments also precludes the possibility of ultrasensitivity
which was earlier theoretically predicted by the same group.*®
While these results demonstrate that bistability is not required
for the functionality of all known QSNs, they also do not
exclude the possibility of bistability in other network layouts.
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Indeed, although integrative model has not yet been con-
structed for V. harveyi-like QSN, interactions within this
network discovered and characterized so far do not suggest
bistability also from the theoretical point of view. Analyses
with single-cell resolution, similar to that in ref 48, are
desirable in the systems where theoretical prediction of
bistability had been provided. To date, the study by
Levchenko, Stevens, and co-workers®® remains the sole
positive experimental verification of bistability in a bacterial
quorum-sensing network.

2.2. Quorum Sensing in the Presence of
Molecular Noise

A typical Escherichia coli cell with length 2 ym and
diameter 0.5 um has a cell volume of only ~0.72 um? (or
7.2 x 107'¢ L). Therefore, for a signaling molecule freely
diffusing in and out of the cell to be present within the cell
at only a single copy, its concentration in the extracellular
environment should be >2.3 nM. So-called slim rods, e.g.,
A. tumefaciens, and Gram positive cocci are even smaller
(V & 0.18 um?®). For them, the minimal detectable concentra-
tion of an extracellular molecule is on the order of 10 nM.
Accordingly, reception of a freely diffusing cell—cell com-
munication signal is subjected to intense extrinsic molecular
noise which arises solely due to the small size of the
“detector”, the bacterial cell itself, and not because of
fluctuations in the extracellular concentration per se. Another
important and well-known factor that affects bacterial gene
regulation is the intrinsic molecular noise, which in part arises
due to fluctuation of the copy numbers of the key participat-
ing molecules, in particular transcription factors.”* Experi-
mental observation of these fluctuations became possible
chiefly due to the introduction of genetically encoded
fluorescent reporters and the associated detection methods
(see discussion in section 2.1). These technological develop-
ments enabled the giant leap forward from the inevitably
population-averaged picture provided by the classical bio-
chemical methods to the full appreciation of highly stochastic
nature of bacterial intracellular environment.

In the framework of QS, both the extrinsic noise (detected
Al) and the intrinsic noise are highest in the low population
density state. With only a handful of potentially detectable
Al molecules and their intracellular receptors per cell (e.g.,
in the case of luxR/I-type networks), stochastic fluctuations
are greater than the average values that are normally
interpreted as deterministic “concentrations”. This makes a
bacterial cell, particularly in the low population density state,
a fundamentally stochastic system. As the dynamics of such
systems generally has been shown to depart from that
predicted by purely deterministic methods,”7® stochastic
modeling techniques are required to confirm, refine, or refute
the predictions of deterministic models. A number of
studies®7"" used the stochastic simulation algorithm (SSA),
also known as the Gillespie algorithm,’”® to simulate intra-
cellular dynamics of QSNs numerically. To account for
molecular noise, Li et al.®* adopted stochastic Petri nets
(SPN) for modeling AI-2 network in E. coli. Interestingly,
taking noise into consideration demonstrated that some
predictions from purely deterministic models may need a
revision. Goryachev et al. used SSA to study a number of
IluxR/I-type network layouts with increasing complexity.?
They found that, with biologically realistic network param-
eters, some of the tested layouts, while predicted bistable
by respective ODE-based models, failed to exhibit bistability
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in the presence of molecular noise which essentially obliter-
ated the difference between the “on” and “off” states. They
concluded that seemingly redundant network elements, e.g.,
multiple positive feedback loops, often found in the real-
life QSNs, might be there to provide sufficient quantitative
difference between the distinct states of the network to enable
its robust, noise-resistant operation. Not only can noise negate
some predicted QSN properties, it may potentially also bring
about novel behavior, unaccounted for deterministically.
Using a synthetic biology strategy, To and Maheshri have
recently demonstrated bimodal population distribution of a
transcription factor copy number in a yeast-based system
where deterministic model did not warrant bistability.”” In a
theory—experiment systems study in E. coli, Tozaki et al.
tested the applicability of ergodicity principle, an assumption
that the percentage of cells in a given state is identical to
the probability to find a cell in this state.”” They found that
ergodicity, typically taken for granted, may be readily broken
if the bacterial growth rate is dependent on the network state,
which is a reasonable assumption in the case of QS. Thus to
avoid erroneous prediction and interpretation of experiments,
stochastic effects arising from the molecular noise and
random switching of QSN states require careful consideration.

To extend stochastic methodology to whole populations,
Goryachev and colleagues®” designed a parallel agent-based
simulation environment in which individual cell-agents,
whose intracellular QSN dynamics was simulated using SSA,
were able to randomly move, divide, and exchange signaling
molecules with the environment. Cell—cell communication
was enabled by the common extracellular space in which
diffusion of signaling molecules was treated in a continuous
deterministic approximation. This unique tool permitted
stochastic simulation of the transition of a whole population
of A. tumefaciens to the induced, high population density
state. Results of these simulations revealed astonishing
diversity of individual cell behavior even in a spatially
homogeneous extracellular environment, the phenomenon
which was recently observed also experimentally.”® As the
computing power becomes more readily available, such
computationally intensive methods may become viable and
valuable tools for the analysis of cell—cell communication
in complex habitats such as biofilms.

Are there any mechanisms embedded into the design of
QSN s that allow them to harness molecular noise or at least
reduce its harmful influence? Levchenko and colleagues
noted that positive autoregulation of a luxR-type QSTR may
play an additional noise reduction role because the intensity
of the molecular noise in AI—LuxR interaction scales
inversely with the square root of the copy number of LuxR
in the cell.® Tanouchi et al.%° highlighted a different noise
reduction feature of QSNs, fast degradation of the QSTR in
the absence of Al, which has been reported for a number of
IuxR-type QSTRs, such as A. tumefaciens TraR.}' Zhou et
al. theoretically analyzed a hypothetical cell—cell com-
munication network inspired by QS but radically different
from the natural QSNs by the inhibitory action of the
QSTR—AI complex on the transcription.®? This design
exhibited spontaneous oscillations which could be synchro-
nized between individual communicating cells in the presence
of extracellular noise. Curiously, these synchronized oscil-
lations were found to be the direct consequence of the
extracellular noise and provided a potentially interesting
example of a fundamentally noise-induced behavior whose
biological relevance is yet to be demonstrated.
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2.3. Integration of QSNs within Bacterial
Decision-Making Circuitry

Cell—cell communication is an integral part of continuous
environmental surveillance. However, molecular mechanisms
responsible for the integration of cell-density dependent
signals with other sensory information are only beginning
to emerge from various studies in individual organisms (see
ref 21 for review). Notably, the degree of QSN intercon-
nectivity with other bacterial decision-making circuits is
found to vary widely from case to case. Thus, fraR/l QSN
of A. tumefaciens controls replication and conjugative
propagation of Ti plasmids and the absolute majority of the
network components as well as the target operons are located
on the plasmid itself.*> This greatly decreases network
interconnectivity and, as a result, the overall complexity of
the system. On the other end of the complexity range lies
diffuse, extremely interconnected QS system of P. aerugi-
nosa, emphatically named by Greenberg and Schuster the
“network of networks”®® (see Figure 5A). Several studies
cumulatively identified hundreds of genes involved in diverse
bacterial life functions, such as basic metabolism, cell wall
generation, stress adaptation, and DNA replication, as targets
of this QS system.

Frequently, in the context of cell density-dependent
communication, bacteria utilize multiple signaling molecules
which are recognized by their respective receptors. The QS
systems of such species then can be considered as super-
networks of several QSNs connected sequentially or in
parallel. P. aeruginosa QS supernetwork is one of the best
characterized examples of such highly interconnected QSNs.
Its lasR/I subnetwork was shown to positively regulate rhlR/I
QSN in a sequential arrangement.*>3* Fagerlind et al.?®
modeled this hierarchical network layout and also considered
some degree of its integration into a larger supernetwork by
explicitly introducing cAMP-activated positive regulator Vfr.
In addition to HSL signals synthesized by LasI and RhlI, P.
aeruginosa also produces third cell—cell signaling molecule,
quinolone PQS.#>% Transcription regulator PqsR (formerly
MvfR) that positively regulates expression of the PQS-
synthetic pgs operon is itself positively regulated by LasR.
Thus PQS signaling system is integrated into the global QS

A B HAI-1
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Figure 5. Integration of QSNs. (A) The two luxR/I-type QSNs of
P. aeruginosa, lasR/I, and rhiIR/I are sequentially connected and
receive numerous inputs from various parts of cellular decision-
making machinery (adapted from ref 160). (B) Three QSNs of V.
harveyi are connected in parallel by feeding their input through
the common LuxU—LuxO phosphorelay system that activates
transcription of several species of Qrr regulatory RNA. In the
presence of chaperone Hfq, Qrr create unproductive complexes with
LuxR mRNA and, thus, block its activity. Protein species are shown
as ovals and RNA species as rectangles.

Goryachev

supernetwork. Qualitative theoretical analysis of a PQS
production-encompassing version of the ever-expending
supernetwork was performed by Viretta and Fussenegger,®’
who sought to identify responses of the QSN to pharmaco-
logical interventions.

QSNs organized in parallel are frequently found in Vibrio
species** (see Figure 5B). Thus, V. harveyi uses three
signaling molecules CAI-1, HSL HAI-1, and AI-2, which
are recognized by their cognate cell-surface receptors CqgsS,
LuxN, and LuxP-LuxQ, respectively. Intriguingly, all three
receptors utilize the same phosphotransfer protein LuxU and
transcription regulator LuxO that controls expression of grr
regulatory sSRNAs. Given this network layout, it is apparent
that bacteria can sense only a weighted sum of the three
individual input signals and cannot distinguish between
separate channels. Using both experimental and theoretical
methods, Bassler, Wingreen, and colleagues have studied this
surprising evolutionary solution in great detail”**~% and
found that HAI-1 and AI-2 are combined strictly additively
with nearly equal weights.!* While contribution of CAI-1
remains to be determined experimentally, theoretical analysis
of Mehta et al.%® predicts that CAI-1 integration weight
should be approximately equal to those of the other two
inputs. On the basis of their information—theoretic approach,
they motivated this prediction by the necessity to reduce
signal interference between the three input channels.

A remarkable example of QSN integration with nutrient-
sensing has been reported recently by Bischofs et al. in B.
subtilis.®" In this popular Gram positive organism, QS is
mediated by Phr pentapeptides that upon import into the cell
bind and inhibit activity of Rap phosphatases.”? Although
high cell density causes transition to sporulation, it is not
sufficient to induce sporulation alone without concomitant
starvation. The Bischofs et al. model suggested that as a result
of integration between the QSN and the nutrient-sensing
network, bacteria sense the amount of “food per cell” rather
then absolute abundance of nutrition. Presumably, this clever
design forewarns bacteria of the impeding starvation even
when the local nutrition concentration is still satisfactory.

3. Why Do Bacteria Communicate?

The majority of the discussed so far aspects of quorum
sensing and cell—cell communication in general were ad-
dressing questions of how diverse molecular mechanisms
identified in various bacterial species enable them to sense
and respond to the changing population density. Natural
curiosity, however, prompts us also to ask questions such
as why bacteria use quorum sensing. This question is directly
related to the ecological function(s) and the evolutionary
value of QS on the individual and population-wide scales.
Since the early days of the QS research, it has been suggested
that in the course of evolution, QS was selected for to control
specific biological functions that are efficient only if per-
formed by a large group rather then by separate individuals.
Examples of such group-dependent actions include expres-
sion of virulence factors toward the common host, production
of antibiotics, and generation of light. However, the need
for collective action is not always obvious in specific cases
of QS signaling. One of the best characterized QS systems
controls conjugal transfer of Ti plasmids in A. tumefaciens.*
Plasmid transfer by conjugation is a “private business” of
the two involved cells, the donor containing the plasmid and
the recipient who can harbor the plasmid but does not possess
it yet. Presence of other donors does not increase the success
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rate of any chosen donor cell per se. On the contrary, ability
to sense the local density of potential recipients could have
come handy by reducing the cost of unsuccessful transfers.
This, however, is not possible because the QSN is located
on the plasmid itself and thus all potential recipients are “QS
silent”—they neither produce nor respond to the signal.
Goryachev et al. addressed this paradoxical situation by
explicitly simulating transition to quorum in distinct envi-
ronmental conditions.’” Specifically, they contrasted cell
densities required to reach quorum in the batch culture where
cells are distributed uniformly in suspension and in a more
ecologically realistic assumption of growth as a biofilm. They
found that while transition to quorum in the batch culture
requires unrealistically high cell densities, transition in the
biofilm can take place at the cell densities readily found in
experiment. The reasons for this difference were clearly the
more compact spatial distribution of cells and the loss of Al
only into a half of the space in the case of biofilm. In
conclusion, it was suggested that while Ti plasmids cannot
“learn” about the density of potential recipients by using QS,
they nevertheless can detect certain advanced stage of biofilm
maturation. From that they can “determine” that their host
cells are firmly attached within a dense bacterial mass which
will inevitably also contain some potential recipients.

Analyses of cases, such as the above example, prompted
the opinion that the concept of population “density-sensing”
should be entirely replaced by “diffusion-sensing”.”> A
specific example of a situation in which “density-sensing”
is clearly irrelevant is the situation when a small number of
bacterial cells is enclosed in a diffusion-impermeable com-
partment. S. aureus, a primarily extracellular pathogen, has
been occasionally found within endosomes of nonprofes-
sional phagocytes in the quantity of 1—2 cells per endosome.
Internalized bacteria apparently manage to escape from the
endosomes, proliferate in the cytoplasm, and eventually cause
apoptosis of the infected cell.” Intriguingly, QS agr operon
of S. aureus (see section 2.1 for details) is activated prior to
the endosomal escape while the agr-defective mutant was
found unable to proliferate inside the cells.”* Koerber et al.
modeled this peculiar instance of QS and computed analyti-
cally and numerically the bacterial escape time.” “Solitary
confinement” of S. aureus cells was recently revisited
experimentally by Carnes et al.,”® who confirmed induction
of agr operon during confinement of bacterial cells in the
engineered nanostructured matrix and demonstrated enhanced
survival of QS-competent cells. To unify “density-sensing”
and “diffusion-sensing”, a concept of “efficiency-sensing”
was proposed recently.”” This hypothesis, that essentially
reiterated the conclusions of ref 37, postulated that cells
compute overall efficiency of secreting extracellular mol-
ecules by factoring in cell density, spatial distribution of cells,
and diffusivity of the medium. Although more biophysically
balanced, this hypothesis also does not cover all possible
functions of QS because secretion of diffusible extracellular
effectors is not the universal “goal” of all known QS-
regulated gene expression systems (conjugation of Ti plas-
mids is just one counterexample). Regardless of potentially
subjective interpretations, QS allows bacteria to survey their
environment by releasing and receiving diffusible signaling
molecules.”® Accumulating knowledge from numerous QS
systems demonstrates that different species use this surveil-
lance information in different ways, sometimes making
entirely opposite decisions. Thus while some bacteria, e.g.,
Pantoea stewartii, build biofilm at high cell density'!
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(collective action), others, like V. cholera, instead disassociate
from the biofilm and become motile when “overcrowded”.
Particular decision will optimally suit specific needs and
ecological strategy of a given microorganism. Given the
diversity of ecological niches, the exact function of QS needs
to be determined on a species-specific basis.

4. Quorum Sensing in Bacterial Biofilms

Biofilms, compact bacterial structures cemented together
by extracellular matrix that form naturally on various surfaces
and interfaces, have recently gained broad recognition as the
major native prokaryotic habitat.” ' Pseudomonas aerugi-
nosa is notoriously hard to eradicate with standard treatment
protocols when it grows as a biofilm in medical catheters
and in the lungs of cystic fibrosis patients. In 1998,
Greenberg and colleagues suggested that QS plays a key role
in the morphogenesis of P. aeruginosa biofilms.'™ They
found that a mutant with genetically disrupted QS was
showing abnormal biofilm morphology with concomitant
increase in susceptibility to antimicrobials. This short report
in Science magazine sparked a great amount of interest
toward the role of QS in biofilm formation across several
disciplines. Therefore, already the first theoretical studies
concerned with QS modeling also attempted to address QS
in the context of biofilms.?*1%5:1% Nilsson et al. for the first
time asked the question how many bacterial cells constitute
a “quorum” and demonstrated that compact organization of
cells in the biofilm has a potential to result in the induction
of the activated state even at relatively low cell density.'%
Koerber et al. constructed a reaction-diffusion model describ-
ing QS and formation of P. aeruginosa biofilm in burn
wounds.'® Explicitly introducing velocity of biofilm propa-
gation due to the growth of its biomass, the same group later
formulated a different mathematical approach to QS in
growing biofilms by representing it as an advection-diffusion
problem.'”” Extending established bioengineering approaches
to modeling bacterial biofilms, Chopp et al. developed a 1D
model of QS in P. aeruginosa biofilm.'® Biological realism
of their model was improved by taking into the consideration
cell death and decay as well as oxygen consumption, factors
that naturally limit the biomass growth. They concluded that
bacteria, dwelling in anaerobic conditions close to the
substratum and often considered metabolically dormant,
should actively produce Al and reach the induced state first.
In the follow-up study,!®” Chopp et al. extended and
confirmed this theoretical prediction by imaging fluorescent
QS reporter at various depths within the biofilm. They found
localized clusters of induced bacteria in the immediate
proximity to the underlying glass slide.

In realistic conditions, such as porous caverns in the soil
or the lumen of a medical catheter, bacterial biofilms grow
in the presence of a hydrodynamic flow which is likely to
affect both the distribution of nutrients and the chemical
communication among the bacteria. To address this important
yet often ignored factor, Parsek, Chopp, and colleagues
explicitly introduced advective flow into their models. In ref
110, they used the Stokes flow model to represent the flow
of fluid above the biofilm and compared model predictions
with the results of their experiments at different flow rates.
As expected, introduction of even moderate flow significantly
increased the cell density requirement to achieve quorum.
Thus at the flow rate 0.04 mL/min (velocity 0.15 mm/s),
the required density was 4 x 10° CFU/mm?, while at 4.0
mL/min (15 mm/s), it was found to be 6 x 10’ CFU/mm?.
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Further technological advance in modeling hydrodynamics
of biofilms was reported by Duddu et al.,'!! where introduc-
tion of sophisticated numerical methods allowed the authors
to consider complex profiles of cell density as well as
detachment of biofilm fragments induced by the sheer stress.
Armed with these tools, Chopp and colleagues recently
revisited induction of QS in biofilms subjected to flow.!?
They found that, to make the situation even more complex,
the influence of flow strongly depends on the morphology
of the biofilm. Biofilms with rough, mushroom-shaped
surface that are frequently found in experiments exhibit more
complex dependence of the critical biomass on the flow rate
and, generally require less biomass to reach quorum than
their flat counterparts.

While continuous methods based on partial differential
equations permit modeling large system sizes, they fail to
capture discrete nature of biofilms composed of individual
cells. Given the highly stochastic nature of the bacterial
intracellular environment (see section 2.2), discrete methods,
based on representation of cells as individual entities, may
provide valuable complementary results. Proposed first in
late 1990s''*!'* as simple cellular automata representing cells
as nodes on a regular 2D lattice, discrete models have
evolved into advanced tools with a potential to realistically
simulate cell—cell communication in complex conditions of
a biofilm. Thus, individual-based models developed by van
Loosdrecht and colleagues'>~!7 utilize spherical particles
characterized by continuous location in 3D space and are
able to independently grow, move, and divide. Rather than
cell—cell communication, metabolic processes in biofilms,
such as production of methane and nitrification, had been
the primary focus of application of these methods. Agent-
based methods, however, provide encapsulated sets of
intracellular variables that can be used to simulate the
dynamics of molecular networks, such as QSN, within
individual cells. This approach was taken by Goryachev and
colleagues in the development of their stochastic simulation
environment in which cell agents could freely move and
divide and had individual intracellular environments chemi-
cally connected to the outside medium.*” Representation of
cells as zero-dimensional points that can occupy the same
or unrealistically close locations in the continuous 3D space,
however, prevented this tool from being able to describe
biofilm structure at a fine level of spatial resolution. More
recently, agent-based methods were used by Xavier, Foster,
and colleagues to address evolutionary aspects of cell—cell
communication in biofilms.!!31!® In ref 119, they assumed
that bacteria produce Al at a constant rate, and once the
critical concentration is exceeded locally, some strains
(termed QS+) terminate production of extracellular matrix
(EPS) and instead invest all their resources into growth, while
EPS+ and EPS— strains either produce EPS constitutively
or do not produce it at all. They concluded that such quorum-
sensing strategy will be evolutionary advantageous if biofilm
dispersal is favored (the case of V. cholera) and detrimental
in chronic, long-term biofilms (the case of P. aeruginosa).
A platform for simulation of QS on a population scale but
with a single cell resolution has also been reported by Melke
et al., who combined intracellular gene-regulation dynamics
and mechanical cell—cell and cell-wall interaction to model
transition to quorum in various spatial layouts on the example
of V. fischeri.%

Goryachev

5. Controlling Quorum Sensing to Reduce
Bacterial Pathogenicity

Closely related to the field of quorum sensing in biofilms
is the area of quorum sensing control in medical applications.
Since the seminal work of Greenberg and colleagues on P.
aeruginosa,'® bacterial cell—cell communication has been
progressively growing in importance as a potential target for
anti-infective interventions.'? Suppression of QS is advisible
in two mutually nonexclusive situations, namely if: (1) in
the quorum-induced state pathogenic bacteria produce biofilm
that protects them from antibiotics and the immune system,
(2) the state of quorum is required to mount aggressive
virulence program. In the first scenario, reduction or complete
destruction of autoinducer molecules can augment other, e.g.,
antibiotic, treatments, while in the second it may decrease
pathogenicity without killing the microorganism, leaving this
job to the immune system now relieved from the virulent
attack. Thus a number of strategies, some of them based on
the use of native autoinducer-degrading bacterial enzymes,
have been proposed to fight pathogens of both animal'?!:!??
and plant!?*!2* hosts.

Complementing these mostly experimental efforts, theo-
retical studies have also been conducted to identify optimal
intervention targets and predict the therapy outcomes 871257128
Thus, Fagerlind et al. suggested utilizing the property of
many native QSNs to rapidly degrade the QSTR in the
absence of the cognate Al by supplying cells with AHL
antagonists.'? Presumably, chemical compounds that strongly
bind QSTR and block AHL-binding pocket without inducing
active conformation of the transcription factor would suit
the purpose. King, Ward, and colleagues utilized their
population-based approach to QS'* to study anti-Al strate-
gies in both liquid culture and biofilms, predominantly on
the example of P. aeruginosa'®>-197131713% but more recently
also in S. aureus.'®

6. Cell—Cell Communication in Engineered
Synthetic Systems

Synthetic biology, a novel branch of bioengineering, strives
to develop standardized library of well-characterized regula-
tory elements to design modified microorganisms with
desired properties.'* Naturally, a module that can provide
synchronization of gene expression across the whole popula-
tion is a high-priority item on the list of synthetic elements.
Because of their simple, well-characterized layout (see
section 2.1), luxR/I type QSNs are promising candidates for
such a module. Design and “debugging” of synthetic biology
projects would hardly be possible without mathematical
modeling that guides and supports the experimental effort
throughout.

Among applications of QS in synthetic biology, popula-
tion-wide synchronization of intracellular oscillators has
captured perhaps the most attention. Collins and colleagues
presented one of the first models predicting synchronization
of synthetic intracellular oscillators by a luxR/I-type QSN.!3
Garcia-Ojalvo et al. constructed a model of an E. coli
population modified by a “repressilator’-type oscillatory
network whose individual intracellular dynamics was coupled
across the population by a QS system.'? In their model, they
observed that individual cells were able to robustly synchro-
nize into a collective rhythm despite intracellular noise. A
number of theoretical studies further explored various aspects
of oscillation synchronization by means of QS.821387140
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Despite much invested effort, experimental realization of the
proposed designs, however, has not been achieved until
recently. At last, in early 2010, Hasty and colleagues reported
the successful implementation of an engineered gene network
that is capable of generating global oscillations in a growing
population of cells.'*! In addition to the commonly used V.
fischeri luxI and luxR, they utilized aiiA gene from Bacillus
thuringiensis that encodes an AHL-degrading enzyme, lac-
tonase. This gene was put under control of the /ux/ promoter,
thus establishing a negative feedback loop that is necessary
for oscillations. By using a microfluidic device, they
manipulated the cell density and monitored the activity of a
fluorescent reporter. Period and amplitude of observed
synchronized oscillations were found to be dependent on the
velocity of flow in the main channel of the microfluidic
device. Interestingly, at low flow rates, they also detected
striking waves of spatiotemporal activity propagating through
the 100 um chamber at velocities ~8—35 um per min.

Beyond synchronization of oscillations, QS-based coupling
has been modeled and experimentally implemented in a
number of engineered designs. Thus Kobayashi et al.
implemented an E. coli strain that could activate transcription
of any gene in a density-dependent manner by engineering
a plasmid-born QS system based on the V. fischeri [uxR and
IuxI genes.' Interestingly, by using a fluorescent reporter,
they clearly observed bistability throughout the transition of
their engineered QSN to the induced state. By further
increasing complexity of the engineered behavior, Weiss and
colleagues generated sender and receiver strains of E. coli
so that the receiver cells responded to Al produced by the
senders in a pulse-like manner.'*? Because the rate, with
which the input signal increased, determined in this design
the response amplitude, a number of interesting spatiotem-
poral patterns of induction has been observed. Specifically,
the receivers were able to respond to rapidly increasing signal
from the nearby senders and ignored slowly increasing
signals from the farther located cells. In a subsequent
paper,143 Chen and Weiss demonstrated that, to establish a
QS system, no bacterial components are absolutely necessary.
Instead, they used budding yeast S. cerevisiae as a host that
carried a plant (Arabidopsis thaliana) signaling system based
on secretion and reception of a cytokinin, isopentenyladenine.
This elegant and meticulous genetic-engineering task, which
resulted in creation of a eukaryotic QSN entirely de novo,
required the state-of-the-art experimental techniques and
mechanistic knowledge accumulated by yeast genetics as well
as careful planning involving substantial use of mathematical
modeling.

If quorum-sensing allows bacteria to “measure” population
density, can this information be fed back to, in fact, control
the population size? Arnold and colleagues asked this
question in a series of elegant synthetic biology studies and
obtained positive answer. In ref 144, they inserted a toxin-
encoding gene ccdB under the control of the V. fischeri QSN
so that it was activated only at a sufficiently high cell density
and observed that the engineered network indeed maintained
cell density of the E. coli host at a controllable steady level.
Assuming the existence of some time delay in this negative
feedback system, it should be possible to observe at least
transient oscillations. This indeed was reported by Balagadde
et al., who cultivated the engineered strain in the micro-
chemostat.'*> Although in nature QS is based on the autocrine
signaling, theoretically nothing prevents a synergistic density-
dependent action to be undertaken by two (or more)
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genetically distinct strains or even species. Brenner et al.!*
explored this possibility by engineering strains of E. coli
harboring two distinct circuits so that circuit A expressed P.
aeruginosa lasl and rhIR, while circuit B encoded rhll and
lasR. Thus, Al produced by strain A activated response in
strain B and vice versa. As a result, mixed population
consisting of both stains, named by the authors a microbial
consensus consortium, exhibited transition to the induced
state in a synergistic, mutually dependent manner. Finally,
by crossing the QS-inducible toxin-mediated population
control with the idea of cross-talking populations, Balagadde
et al. generated a bacterial equivalent of the predator—prey
ecosystem.'¥ In this intricate design, the predator-produced
Al (Lasl generated 30C12HSL) induced killing of the prey,
while the prey-produced AI (LuxI generated 30C6HSL)
rescued the predator from expression of the toxin. The
resulting synthetic ecosystem exhibited a variety of regimes
including extinction of the prey, coexistence, and cell density
oscillations. Another synthetic system with emergent oscil-
lations was recently reported by Marguet et al. in E. coli
strain engineered with a suicide circuit containing QS
components and a lysis gene.'*®

7. Cell—Cell Communication beyond Quorum
Sensing

While the majority of known bacterial cell—cell com-
munication can be characterized as quorum sensing or, more
generally, autoinduction,”® a number of notable exceptions
has also been described in the literature. In the Introduction,
I defined QS as an (i) autocrine signaling system that (ii)
regulates gene expression and relies on (iii) diffusive
messengers. Violation of any or several of the above criteria
renders the cell—cell communication system distinct from
the classical “quorum sensing”. Indeed, bacterial com-
munication need not be always autocrine. The possibility of
paracrine signaling emerges in bacterial species capable of
differentiation into several distinct cell types, so that one
cell type is a signal sender while another is a receiver. Indeed,
Kolter and colleagues have recently described an example
of such a communication in B. subtilis.> Formation of biofilm
in B. subtilis is under control of two major signals: ComX
and surfactin. ComX activates production of surfactin, while
surfactin, in turn, induces production of extracellular matrix
in a certain cell type. Cells that produce surfactin do not
respond to it themselves. Moreover, it turns out that surfactin
respondents become insensitive to ComX, thus precluding
their differentiation into the surfactin producers.

In addition to, or instead of, altering the gene expression
pattern, a signaling molecule can affect bacterial behavior
through chemotaxis. Austin, Stock, and colleagues described
a self-attractive mode of E. coli behavior'*'>° in which
bacteria followed a chemotactic molecule, likely an amino
acid, secreted by bacteria themselves. As a result, bacteria
were found to accumulate in small confined spaces within
micromanufactured chambers and mazes. Modeling of this
behavior with Keller—Segel type reaction—diffusion equa-
tions fully reproduced their experimental observations.'*
Extending these results, Levchenko and colleagues con-
structed a microfluidic device to study formation of E. coli
microcolonies in small confined spaces represented in their
experiments by microfluidic chambers.'>! They demonstrated
that the long-term growth in such environments can result
in self-organized states with highly correlated organization
of cells. With the help of in silico modeling, this effect was
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attributed to the mechanical interaction between the cells and
the chamber walls.

Another example of signaling with secreted amino acids
has been reported by Salman and Libchaber, who found that
direction of thermotaxis in E. coli is population-density-
dependent.'>? Signaling molecule in this case is glycine that
is both secreted and sensed by the cells, thus allowing
bacteria to monitor the population density. Curiously, at low
population density, bacteria swim toward higher temperature,
but upon reaching a “quorum,” they reverse the direction
toward lower temperature. In both examples, signaling
molecules affect chemotactic behavior rather then gene
expression and the classical QS positive feedback loop is
not closed because the signal is perceived but its production
is not amplified. An interesting variation on the theme could
be possibly observed if the chemotactic molecule was also
a true quorum-sensing signal. Computational modeling
suggests that in this case a spatially homogeneous bacterial
population can spontaneously evolve into a stable pattern
with multiple isolated maxima of cell density (Goryachev
et al., unpublished results). While such a behavior as yet
has not been reported in a wild-type bacterial population,
potentially it could be achieved in a suitably engineered
synthetic strain.

Finally, just like the cells of multicellular eukaryotes,
bacteria can relay signals by direct physical contact of
neighbors.' Perhaps the most studied example of this
communication mode is the C-signaling in Myxococcus
xanthus.">* C-Signaling is mediated by a product of pro-
teolytic cleavage of CsgA protein that is exposed on the outer
membrane of M. xanthus and conveys information between
two polarized cells aligned end-to-end. While the detailed
biology of C-signaling and the associated multicellular
development are beyond the scope of this review, it is
noteworthy that mathematical modeling has been and is likely
to continue playing a crucial role in understanding complex
intra- and multicellular behavior of this extraordinary social
microbe. !>~ 158

8. Conclusions

Cell—cell communication among prokaryotes is an excit-
ing multifaceted phenomenon that justly has attracted
limelight in the past few decades. The field in itself has been
a living testament to the systems biology cause by showing
how experiment and theory can mutually enrich each other.
Although the enormous progress in our understanding of the
underlying molecular mechanisms and dynamic principles
has been already achieved, much yet remains to be learned.
Until recently, most of attention has been focused on the
characterization of class A [uxR/I quorum-sensing networks.
Ample modeling literature proposed bistable, switch-like
behavior of these QSNs in various Gram negative organisms.
Yet, apart from a few notable examples described above,
experimental validation of these predictions has been scarce.
Outside of the class A QSNs, mechanistic knowledge is yet
mostly fragmentary and our understanding of the governing
principles is still far from complete. In particular, elusive
operation principles of the class B luxR/I QSNs remain
largely enigmatic. More work will be necessary also to better
understand the integration of cell—cell communication into
the overall bacterial decision-making machinery. Theoretical
analysis and modeling have already proven their worth, yet
their potential is far from being exhausted or even fully
utilized. As follows from a number of recent successes, the

Goryachev

best result is achieved when experimentation and modeling
work closely together by iteratively informing and guiding
each other. To achieve this, experimentalists and theoreticians
should consciously reach for each other willing to break away
from certain confounding dogmas and instead embrace the
culture of their respective counterpart.'>
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