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Cellular deformation and intracellular stress propagation during optical stretching
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Experiments have shown that mechanical stress can regulate many cellular processes. However, in most
cases, the exact regulatory mechanisms are still not well understood. One approach in improving our under-
standing of such mechanically induced regulation is the quantitative study of cell deformation under an
externally applied stress. In this paper, an axisymmetric finite-element model is developed and used to study
the deformation of single, suspended fibroblasts in an optical stretcher in which a stretching force is applied
onto the surface of the cell. A feature of our physical model is a viscoelastic material equation whose param-
eters vary spatially to mimic the experimentally observed spatial heterogeneity of cellular material properties.
Our model suggests that cell size is a more important factor in determining the maximal strain of the optically
stretched fibroblasts compared to the thickness of the actin cortical region. This result could explain the higher
deformability observed experimentally for malignant fibroblasts in the optical stretcher. Our model also shows
that maximal stress propagates into the nuclear region for malignant fibroblasts whereas for normal fibroblasts,

it does not. We discuss how this may impact the transduction of cancer signaling pathways.
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I. INTRODUCTION

Cells are subjected to mechanical stresses arising from
their external environment throughout their lifetime. The un-
derstanding of the response of an individual cell to these
stresses is important in many areas of biophysics. Indeed,
mechanical stresses have been shown to regulate processes
such as proliferation, migration, and differentiation [1-5].
While the exact mechanotransduction mechanisms involved
are still not well understood, the quantitative study of how
cells deform under mechanical stresses can yield important
insights.

Malignant transformation of normal cells into the dis-
eased state is known to induce morphological alterations in
the cytoskeleton, leading to changes in a cell’s viscoelastic
properties [6,7]. Researchers using micropipette aspiration
found a 50% reduction in the elasticity of malignantly trans-
formed fibroblasts as compared to their normal counterparts
[8]. Other researchers using atomic force microscopy [9] to
investigate normal and cancerous endothelial cell lines have
also reported that cancerous cells have a stiffness (as mea-
sured by the Young’s modulus) about 1 order of magnitude
lower than normal ones, which might be attributed to a dif-
ference in the organization of the cytoskeletons of the cells
[10]. Results from other experimental techniques such as mi-
croplate manipulation [7] and optical tweezers [11] have also
shown that cancerous cells are either less elastic or less vis-
cous, depending on the measurement techniques and models
used. Recent experiments have also shown that normal and
malignantly transformed fibroblast cells deform (as mea-
sured by their optical deformability) to different extents
when stretched optically [12—14]. The optical deformability
is the strain normalized by the stretching force that the cell
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experienced (refer to [12] for detailed definition). This dif-
ference in the optical deformability has been exploited to
construct diagnostic devices to screen for cancer cells
[15-17].

In view of these experimental results, a numerical physi-
cal model that is able to describe the deformation of an in-
dividual cell, normal or cancerous, can give us important
insights into the response of the cell when it is subjected to
mechanical perturbations. The objective of this paper is to
describe a viscoelastic, axisymmetric finite-element model of
cell deformation and to discuss the results that we have ob-
tained from applying this model to study the optical stretch-
ing of suspended fibroblast cells. While the use of viscoelas-
tic models [18] to study cell deformation is not new,
especially in the bioengineering literature [19-21], we con-
sider a minimal physical model that yields features of the
experimental results and are not concerned with precise and
accurate models. In particular, we consider cellular heteroge-
neity in our model formulation. Previous viscoelastic models
considered the cell as one homogeneous viscoelastic con-
tinuum which can be characterized by a single set of vis-
coelastic parameters (the number of parameters used varies
from model to model). In our model formulation, we recog-
nize that mammalian eukaryotic cells are heterogeneous and
possess at least two distinct regions with different mechani-
cal properties [22-25]: a cortical region (the network of actin
filaments and associated cross-linking proteins that are teth-
ered to the plasma membrane) that exhibits a predominately
elastic response and a cytoplasmic region that is mainly free
of such polymer scaffolds and exhibits a viscous response.
Hence, we propose that the viscoelastic parameters in our
model vary spatially to represent these two distinct cellular
domains. Our approach is similar to that of the two-
component model proposed by Laurent et al. [26]. In their
model, the two components, namely. the submembranous
“cortical” cytoskeleton and the “deep” cytoskeleton, were
each represented by different sets of linear viscoelastic pa-
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FIG. 1. Schematic of the viscoelastic three-parameter fluid
model used to represent the material constitutive equation for the
finite-element formulation. It consists of a linear dashpot connected
in series with a Voigt element, which is a linear spring connected in
parallel with a linear dashpot. Every discretized region within the
cell is represented by such a three-parameter fluid model whose
parameters {7;, 7,, k} can vary spatially.

rameters. However, in our approach, we allow for the spatial
variation of the viscoelastic parameters within the two cellu-
lar domains, a feature that is not present in their model [26].

The optical stretching experiments were carried out with
constant stress being applied to the suspended fibroblasts for
different time intervals of 0.2, 2.5, and 10 s [14]. We have
chosen to model the experiment for the intermediate time
scale of 2.5 s because we believe that they are most likely to
reveal the viscoelastic behavior of the fibroblasts. The cellu-
lar response at the short loading time scale of 0.2 s is likely
to be dominated by the elastic characteristic of the fibroblasts
since there is insufficient time for viscous dissipation to oc-
cur. Thus, the use of a viscoelastic model at this time scale
may not be suitable. Similarly, the cellular response at the
long loading time scale of 10 s is likely to be dominated by
(a) dynamic remodeling of the cytoskeleton within the fibro-
blast as it stretches and (b) nonlinear stiffening response of
the cytoskeleton elements such as the actin network [27,28]
at large strains.

In this paper, we investigate the relative importance of
cell size and thickness of the actin cortical region in deter-
mining the cellular deformability in the optical stretcher. The
size differences between the malignantly transformed and
normal fibroblasts affect the stress profile being applied on
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the fibroblasts. The differences in thickness of the cortical
region, as can be seen from fluorescence imaging [12,15],
directly affect the overall compliance of the fibroblasts.
Therefore, these two factors are important in understanding
why the deformation of malignantly transformed fibroblasts
is different compared to normal fibroblasts. From our model,
we show that the cell size contributes more significantly to
this difference in deformability when compared to the thick-
ness of the cortical region.

II. METHODS
A. Finite-element formulation

We use an axisymmetric formulation which allows us to
capture the three-dimensional response of the cell in the op-
tical stretcher with a two-dimensional model. Our analysis is
done in the linear viscoelastic regime assuming that the cel-
lular deformation is small compared to the overall size of the
cell, so that nonlinear cellular stiffening is ignored. The gov-
erning equation of motion for the dynamic deformation of
such a body is [29]

Mu'+f BTodV =f, (1)
\4

where M is the mass matrix, B the strain-displacement ma-
trix, o the stress vector, f* the external load vector, and u
the nodal displacement vector. To solve Eq. (1) for u, we
need to define a constitutive equation relating o to u. For
this, we will assume that every discretized region within the
body is a viscoelastic three-parameter fluid consisting of a
linear dashpot connected in series to a Voigt element (refer to
Fig. 1 and the Appendix for details of the formulation).
The choice of a viscoelastic fluid model is motivated by
experimental observations that suspended fibroblasts de-
formed in the optical stretcher exhibit residual strains (i.e.,
do not return to their initial sizes on the time scale of obser-
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FIG. 2. Model geometry and spatial variation of material properties. (a) Schematic of the axisymmetric geometry of a cell of radius unity
and definition of the radial coordinate p used in the finite-element simulation. Making use of symmetry, we need to only model one-quarter
of the cell in our formulation. (b) Spatial variation of the material properties of the three-parameter fluid model with p. The elasticity k of
the cell decreases exponentially away from the cortical region while the viscosities exhibit the opposite trend: 7, varies in a similar manner
as 7, with respect to p. The cortical region is defined as the region 0.8=p=1.
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vation) after the removal of the stretching force [14]. For the
loading time scale that we are interested in (2.5 s), the re-
sidual strain after stress relaxation (unloading) is about 20%
of the peak strain during the loading phase (refer to Fig. 1(c)
in Wottawah et al. [14]). This observation contradicts the use
of a viscoelastic solid model to describe the deformation of
the fibroblast as such a model does not exhibit any residual
strain upon unloading. Instead, we chose a viscoelastic fluid
model because its unloading response is qualitative similar to
that shown in the optical stretcher experiment [14]. This is
also another distinct difference between our model and other
viscoelastic solid models used to describe micropipette aspi-
rations in former studies [19,20].

B. Model parameters

The initial geometry of the cell in our model is repre-
sented by a sphere of radius unity in nondimensional units.
We assume that the material properties of the cell are azi-
muthally isotropic. Then, we can introduce the radial polar
coordinate p of a material point from the origin of the cell
[Fig. 2(a)] so that the material property of each discretized
region is a function of p [Fig. 2(b)].

For normal cells, we represent the actin cortical region as
the region 0.8=p=1, i.e., with a cortical thickness of 20%,
and the cytoplasm as the region 0=p<0.8 [15]. The thick-
ness of the actin cortical region in our model is chosen to
represent the average cortical thickness of normal fibroblasts
(17%-23%) based on the analysis of fluorescence images
straining for actin [15]. From these fluorescence confocal
images (refer to Fig. 4 in Guck et al. [12]), we can see that
the fibroblasts “...retains an extensive polymeric network
even when in suspension...” [12] and that the actin filaments
are highly localized to the cortical layer underneath the
membrane. The intensity of the fluorescence in these images
provides the spatial distribution of filamentous actin within
the suspended fibroblasts and we can see that actin concen-
tration decreases toward the center of the fibroblasts (away
from the cortical region). Based on these images, we as-
sumed that the actin filaments concentration in the cortical
region to be constant and decreases linearly toward the cen-
ter of the cell (p—0).

The elasticity of an isotropic, cross-linked network com-
prising semiflexible biopolymers such as actin have been

_ { i cort + (77i,cyto - 77i,cort)(l - e—a(pc—p)/pc) for p < Pe> i= 1’2
;=

i ,cort

where k., and 7, ., denote the elasticity and viscosity of
the cell in the cortical region, k., and %,.,, denote the
asymptotic basal elasticity and asymptotic plateau viscosity
of the cell in the cytoplasm, « is a parameter that controls the
rate of exponential increase or decrease, and p, is the radial
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FIG. 3. Schematic of the optical stretching of a suspended cell.
The stretching force is generated on the surface of the cell and acts
normal to the cell surface. This stretching force can be approxi-
mated by Eq. (4) where n is a parameter that depends on the ex-
perimental setup and the size of the cell. Figure adapted from Ref.
[16].

studied extensively by MacKintosh et al. [30] and Gardel er
al. [27]. For a given density of cross linkers, the network
elasticity scales as a power law of the actin concentration
with a coefficient of approximately 2.5 for both weakly
cross-linked and tightly bundled (fully cross-linked) net-
works (refer to Figs. 1(a) and 2(c) in Gardel et al. [27]).
However, Ananthakrishnan et al. [15] argued that such a
model does not take into account the transient cross-linking
dynamics (binding and unbinding) of the cross linkers and
tend to overestimate the network elasticity. Instead, they pro-
posed to take into account the chemical kinetics of the
binding-unbinding of the cross linkers and derived a relation-
ship for the network elasticity and actin concentration (refer
to Fig. 3(b) in Ananthakrishnan et al. [15]). Following their
approach, we proposed a simplified exponential function to
describe the dependence of the network elasticity to actin
concentration (to mimic the results presented in Fig. 3(b) in
[15]) in our model. For the network viscosity, we assumed
that its dependence on actin concentration follows the oppo-
site trend as compared to the network elasticity. This is to
approximate the predominately fluidlike flow response of the
cytoplasm away from the cortical region. Combining our
simplified function with the spatial variation of the actin con-
centration within the suspended fibroblast, we obtained the
following equations for the spatial variation of the cellular
elasticity k:

k= {kbyto + (Keor = kt')fzo)e_a(pc_p)/p" for p<p.

2
kC()rl for I)2 pC ( )

and

3
for p=p., i=1,2, ®)

polar coordinate of the interface between the cortical region
and cytoplasm. The variable p. is set to 0.8 as described
above. Thus we have a total of seven variable parameters

(kcort’ kcym’ nl,cart’ nl,cyto’ 772,cort’ 772,cyt07 and a) in our model.
We note that our assumption for the choice of distribution of
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TABLE 1. Rheological properties of different cell types obtained experimentally. The cellular elasticity and viscosity reported spreads
over a huge range, with about 2-3 orders of magnitude difference, depending on the cell type, the experimental techniques, and the model
used to extract the rheological properties from the experimental data. The parameters (uo, w1, 77;) defined for the SLS below follows this
convention: u is the elasticity of the spring element in parallel connection with the Maxwell element, w; is the elasticity of the spring
element in the Maxwell element, and 7, is the viscosity of the dashpot in the Maxwell element.

Elasticity Viscosity
Technique Cell type (Pa) (Pa's) Model
Extracellular or whole cell measurements
Magnetic twist [4] Endothelial 2-10 n.a. Secant
Optical tweezers [14] Fibroblast G'=70-100 G"=25-50 (Pa) Three-parameter fluid (deduced)
Micropipette [20] Endothelial po=~45, u=~75 7=~ 3400 SLS
Microplates [21] Fibroblast o=~960, u;=~510 71=~13,000 SLS
Chondrocytes Mo=~200, pu;=~250 n,=~2500
Micropipette [19] Nucleus Mo=550-700, u;=500-750 7,=5000-6000 SLS
Micropipette [31] Leukocyte po=~0.75, u;=~24 7=~33 SLS
Cell poker [32] Neutrophil 118 n.a. Secant
Rheometer [33] D. discoideum G'=55 G"=25 (Pa) Direct (10 rad/s)
AFM [34] Platelet 1000-50000 n.a. Hertz theory
Spont. retraction [35] Fibroblast 1700 400000 Kelvin-Voigt
Magnetic tweezers [36] Fibroblast 30000 2000 Four-parameter fluid
Micropipette [37] Chondrocytes o=170-180, p;=190-200 71=7500-8000 SLS
Intracellular measurements
Magnetic tweezers [22] Macrophage 20-735 210 Four-parameter fluid
LTM [25] Epithelial G'=72 G"=38 (Pa) Direct (10 rad/s)
Magnetic twist [38] Macrophage ~15 ~2000 Secant

the cellular material properties holds only for cells in suspen-
sion and not for adhered cells.

The cell nucleus is omitted in our model formulation for
simplicity given that the peak strain experienced by the cells
in the optical stretcher (for the 2.5 s loading time scale that
we are considering) is less than 6% [14]. We recognize that
the cell nucleus possesses a very different set of mechanical
properties from the other part of the cell and it plays a sig-
nificant role in determining the overall response of the cell
under any form of mechanical loading. However, under the
small deformation regime that we are modeling, the contri-
bution of the nucleus to the overall cellular response will
likely be minimal and will not affect the qualitative trend of
the results presented. The contribution of the nucleus to the
overall cellular deformation will become increasingly impor-
tant and significant at higher strain regime such as that ob-
served for the 10 s loading time scale in the optical stretcher
where the cellular strain reaches a quasistatic plateau. Wot-
tawah et al. [14] attributed this observation to “...further
fluidlike extension is prevented by an elastic component
(evidence of significant contribution from the nucleus),
which now dominates the temporal deformation.”

The stresses generated by the optical stretcher on the sur-
face of the cell (p=1) can be approximated by [16]

o=a,cos" 6, 4)

where o is the stress normal to the cell surface, oy is the
peak stress along the laser axis (represented by the z axis)

and is independent of the radius of the cell, 6 is the azimuth
angle measured relative to the laser axis [Fig. 2(a)], and n is
a parameter that depends sensitively on the ratio of the half
width of the laser beam at the cell to the initial radius of the
cell (Fig. 3). Thus, a large value of n can indicate one of two
experimental scenarios: either stretching the same cell by a
laser that produces a more localized stress distribution or
stretching a larger cell with the same laser. The value of the
parameter n in Eq. (4) also depends on the refractive index of
the cell relative to the medium. However, it has been shown
that the refractive index for the malignant and normal fibro-
blasts used in the optical stretcher experiments are indistin-
guishable (refer to Fig. 3 in Ref. [12]). The forces in the
optical stretcher are generated as a result of the differences in
the dielectric constant of the cell and the medium and stably
trap the cell in the middle of the optical stretcher. Thus, there
is no need to consider effects such as cell-substrate adhesion
or shape changes owing to the cell resting on the substrate.

C. Model validation

From Table I, we can see that the values of the cellular
elasticity and viscosity reported in the literature by various
researchers vary over a huge range. This disparity in the
rheological properties obtained experimentally could repre-
sent biological diversity or could be due to the different ex-
perimental techniques used by the different researchers. The
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underlying model used to extract the elasticity and viscosity
from the experimental data could also contribute to the
spread of the reported values.

Our strategy in choosing the parameters for our finite-
element model is to constrain these parameters within certain
physiological ranges using the reported values in Table I. For
example, we note that most of the elasticity values reported
using the standard linear solid (SLS) model in Table I falls
with the range from 0.75 to 250 Pa [19,20,31,37] which is
roughly consistent with the estimate of the elastic modulus
(G'=70-100 Pa) obtained in Ref. [14]. Using these re-
ported values, we constrained the parameters (k;,,Kcy,) in
our model within a range of 1-250 Pa. In a similar manner,
we constrain the range of (7 cops 71 cyr0) from 30 to
8000 Pas.

The parameters (77 cop» 72,cy0) are used to control the
magnitude of the retardation time in the Voigt element of the
three-parameter fluid model. This retardation time corre-
sponds to the time-scale whereby the stress within the body
is transferred and borne by the elastic component of the
Voigt element and do not correspond to the physical viscos-
ity of the cell. We assume that such transfer of stress occurs
within a time-scale ranging from fractions of a second to
seconds and therefore constrain the parameters
(72,cort» Ma,eyo) SO that the ratio of (#,/k), the retardation
time, falls within the range of 0.1-10 s.

Using the constrained range of the parameters
(kcort’kcyto’ M,corts ﬂl,c‘yto’ M. corts 7]2,c‘ytu)’ we run our simula-
tion for a total of 6 s with a loading time of 2.5 s to model
the experimental setup in Wottawah er al. [14]. For each
simulation, one pair of parameters is varied while the other
pairs of parameters and a were kept fixed. The cellular strain
(measured along the axis of the cell parallel to the direction
of stretch) is obtained by dividing the change in the length
along that axis by its original length. The strains obtained
from our simulations are compared to the reported experi-
mental data in a qualitative manner (we compare the trends
of the strain development from our simulation to the actual
experimental data). We did not carried out any quantitative
analysis (such as least-squares minimization) on the simula-
tion fit to the experimental data because of (1) the inherent
uncertainty in the experimental data and (2) the rheological
properties obtained from our model can only be considered
bulk estimate of the cellular elasticity and viscosity. Hence,
we believe that any quantitative error analysis would not be
meaningful. The set of viscoelastic parameters that best fit
the experimental trend are as shown in Table II.

We have also carried out a parameter sensitivity analysis
for a [the parameter in Eqgs. (2) and (3) that controls the rate
of exponential increase or decrease of the cellular material
properties from the cortical region to the cytoplasm region],
while keeping the rest of the other parameters were kept
fixed, to see how dependent our results are on this parameter.
We observe that the strain response of the cell is dependent
on the value of @ chosen and the strain response curve ob-
tained using a value of a=2.5 gives us the best fit to the
experimental data [refer to Fig. 4(a)] for the set of viscoelas-
tic parameters shown in Table II. We also note that if we set
a to zero, equivalent to modeling the cell as a homogeneous
sphere, the fit to experimental data is significantly worse
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TABLE II. Viscoelastic material parameters obtained by fitting
our finite-element model to the experimental data.

Value obtained by fitting to data for 2.5 s loading

Parameter Cortical Cytoplasm
7 (Pas) 1500 3000
7, (Pas) 7.5 75

k (Pa) 150 30
Poisson’s ratio 0.49 0.49

compared to that obtained using a nonzero value of a=1 or
2.5. This suggests that spatial dependence of material prop-
erties is necessary to fit the experimental data. We also in-
vestigated if the exact functional form of this spatial depen-
dence is important for determining the strain response of the
cell in our simulation. Using a=2.5 as our base case, we
examine the effect of using a linear and a logarithmic varia-
tion in the spatial distribution of the cellular material prop-
erties [refer to Fig. 4(b)]. From Fig. 4(b), we can see that the
strain response obtained in our simulation using the expo-
nential variation gives the best fit to the experimental data as
compared to the linear and logarithm variation. This supports
our earlier assumption in choosing an exponential functional
form to describe the spatial variation of the material proper-
ties.

Our model differs from previous viscoelastic models
[7,19,20] which considered the cell as a viscoelastic con-
tinuum represented by a standard linear solid characterized
by a single set of viscoelastic parameters. In these previous
models, there were no distinctions made between the cortical
and cytoplasmic regions of the cell hence the viscoelastic
parameters obtained from fitting to the experimental data are
averages of the overall response of the cell. In our model, we
distinguish between the cortical and cytoplasmic regions of
the cell and are able to obtain two different sets of viscoelas-
tic material parameters for these two distinct regions by fit-
ting to the experimental data from the optical stretcher. This
approach is similar to the core-shell model described in
Ananthakrishnan et al. [15] which takes into account the
different layers of the cell such as the nucleus, interior net-
work, and the actin cortex. However, the core-shell model
assumes that the different layers in the cell are represented
by elastic layers which are different from our viscoelastic
model. Furthermore, the equations used in solving the core-
shell model are also restricted to idealized spherical geom-
etry while our finite-element model has the capability to ana-
lyze less regular cellular geometry. The value of the cortical
elasticity obtained from our model is comparable to the elas-
ticity for the actin cortical shell from the core-shell model.
This is not surprising since both models consider the cell to
be comprised of distinct regions. However, comparison of
the viscosity values between the two models is not possible
since they assumed elastic properties.

The main advantages of our model as compared to previ-
ous models described above are twofold: (i) spatial distribu-
tion of the cellular material properties can be obtained by
fitting to the experimental data and (ii) arbitrary cellular ge-
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FIG. 4. (Color online) Sensitivity analysis to determine if our simulation results (the strain response along the long axis of the cell) are
dependent on the values of the parameter «. (a) We observe that our results are dependent on the value of @ chosen and the strain response
curve obtained using a value of @=2.5 gives us the best fit to the experimental data. (b) The strain response obtained from using the
exponential variation gives the best fit to the experimental data as compared to the linear and logarithm variations.

ometry can be analyzed for different experimental setups.
First, the spatial distribution of the material properties ob-
tained using our model can provide more information on
cellular heterogeneity and its effects on stress propagation
within the cell interior (more details will be described in Sec.
IIT). Such analyses are not possible with previous viscoelas-
tic models [7,19,20] as these models are one dimensional and
hence do not include any spatial information. Second, the
ability to analyzed arbitrary cellular geometry provides us
the capability to model the actual cell shape in the experi-
ment and not be restricted to idealized spherical or elliptical
geometry. This capability is important in situations when the
actual cell shape has a significant influence on the overall
cellular deformation and the use of an idealized geometry
can lead to inaccurate results.

In addition, the choice of the constitutive equation to de-
scribe the material properties in our model is also nonrestric-
tive. The choice of using a viscoelastic fluid model in our
current analysis of the data from the optical stretching ex-
periments [14] was motivated by experimental observation.
For analysis of a different experimental setup, other elastic
and/or viscoelastic solid-fluid models can be chosen to rep-
resent the material constitutive equation. It is also possible to
assign different elastic or viscoelastic models to the different
regions of the cell in the same analysis, such as the cortical
region and the cytoplasm, should this need arises. This flex-
ibility in choosing the appropriate constitutive equation in
our model allows us to analyze data from not just the optical
stretcher but also from other experiments.

The main disadvantage of our model is the larger number
of variable parameters used in our fitting to the experimental
data (we have a total of seven variable parameters) and the
higher associated computational costs. In our analysis, we
sought to reduce this computational cost by imposing an a
priori constraint on the range of values for these parameters
by doing a review of previous experimental studies (refer to
Table I). In addition, the functional form for the spatial varia-
tion in the material properties is also open to question and we

justified our choice of an exponential variation by referring
to the analysis of Ananthakrishnan et al. [15]. However, the
actual spatial heterogeneity within the cell can be more com-
plex and affected by other factors such as the presence of
microtubules, intermediate filaments, and other organelles.
Nevertheless, we believe that these additional layers of het-
erogeneity are higher-order corrections to our simulation re-
sults and will not affect the overall qualitative trend pre-
sented here.

III. RESULTS

A. Maximal strain developed depends on size of suspended
fibroblasts being stretched

From experiments [12,15], we know that the optical de-
formability of malignantly transformed fibroblasts is signifi-
cantly higher than that of normal fibroblasts. From the data
in these papers, we estimate that the mean optical deform-
ability of malignantly transformed fibroblasts to be about
40% higher compared to normal fibroblasts. Guck et al. [12]
suggested that the thickness of the actin cortical region plays
an important role in determining this difference. We find that
the thickness of the cortical region does indeed affect the
cellular deformability but that cell size, through its effect on
the stress profile is a more important factor in determining
the deformation of the cell instead.

Table III lists some of the differences between malig-
nantly transformed and normal fibroblasts. Normal fibro-
blasts generally have a larger radius (on average, 10% larger)
and also a thicker actin cortical region as compared to ma-
lignantly transformed fibroblasts [15]. The larger radius of
the normal fibroblasts means that the value of the parameter
n in Eq. (4), which characterizes the spread of the stress
distribution, is higher. Thus, under the same experimental
setup, these normal fibroblasts are being subjected to a more
localized stress distribution compared to the malignantly
transformed fibroblasts [15]. The range of the parameter n
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TABLE III. Material properties of suspended normal (NIH/3T3
and BALB/3T3) and malignantly transformed (SV-T2) fibroblasts
in the optical stretcher experiment. The normal fibroblasts are sub-
jected to a more localized stress distribution as characterized by a
larger value of n as compared to the malignantly transformed fibro-
blasts. Approximately 95% of NIH/3T3 and 70% of BALB/3T3
fibroblasts are subjected to a more localized stress distribution with
14=n=24 while 90% of SV-T2 fibroblasts are subjected to a
broader stress distribution with 4<n=<14 [15].

Malignantly
Cell type Normal transformed
Thickness of cortical region (%) 17-23 1215
Parameter n in Eq. (4) 14-24 4-14

for normal fibroblasts is from 14 to 24. For malignantly
transformed fibroblasts, it is from 4 to 14. We show quanti-
tatively how these two factors, namely, the cell size (and
equivalently, the spread of the stress distribution) and the
relative thickness of the cortical region, affect the cellular
deformation. For our analysis, we assume that the material
properties of the malignantly transformed fibroblasts are
identical to those of normal fibroblasts. This is to simplify
our analysis and to determine the relative contribution of the
cortical thickness and cell size to the cellular deformation. In
reality, we would expect the malignant fibroblasts to possess
lower elasticity and viscosity compared to the normal fibro-
blasts [7,8].

We start by considering the effect of the parameter n on
the deformation of a solid homogeneous elastic sphere sub-
jected to an axisymmetric stress on the surface given by Eq.
(4). This would correspond to optically stretching homoge-
neous elastic beads of varying sizes with a fixed laser width
in the experimental setup. The justification for this analysis is
to test our hypothesis that the cell size (through its effect on
the spread of the stress distribution) affects the cellular strain
in the optical stretcher.

Following the approach in Ananthakrishnan et al. [15]
[refer to Egs. (1)—(3) and (A1) in that reference], we can
compute the analytical strain at the surface of the sphere as a
function of 6, the azimuth angle measured relative to the
laser axis (z axis), and the elastic properties of the sphere for
different values of n. Denoting the strain along the laser axis
as g, and that perpendicular to the laser axis as €,, we com-
pared our finite-element simulation results for a homoge-
neous elastic sphere with the analytical solution for n=2, 4,
and 6. The results are summarized in Table IV. We can see
that there is close agreement between our simulation results
and the analytical solutions with errors of less than 1%. We
further extend our simulation for values of n ranging from 2
to 24 and plot the results in Fig. 5. We see that the strain
along the laser axis (g,) for an elastic sphere is sensitively
dependent on the parameter n. For 14 =n =24, correspond-
ing to a larger cell or a more localized stress profile, ¢, is
smaller compared to the case of 4 =n= 14, corresponding to
a smaller cell or a broader stress profile. In Fig. 5, we see that
e, for n=4 (which represents the stress profile experienced
by the smallest, malignant fibroblasts) is approximately one-
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TABLE IV. Strain for a solid homogeneous elastic sphere along
the laser axis &, and that perpendicular to the laser axis &,. The
simulation results from our finite-element model are compared
against the analytical solution for values of n=2, 4, and 6. There is
close agreement between simulation and analytical solutions for this
idealized case with errors of less than 1% in both &, and &,.

Stretching profile: o=0y cos”

Parameters n=2 n=4 n=6

Simulation results obtained from finite-element simulation

g, 0.0246 0.0247 0.0233
g, -0.0117 —0.0087 —0.0068
Analytical results for a solid homogeneous elastic sphere
€, 0.0244 0.0245 0.0231
&, -0.0117 —-0.0087 —-0.0068
Error in strain (%)
€, 0.73 0.64 0.62
& —-0.08 —-0.08 -0.08

third larger compared to e, for n=24 (which represents the
stress profile experienced by the largest, normal fibroblasts).
This observation shows that the profile of the surface stress
as represented by the parameter n in Eq. (4) plays an impor-
tant role in the deformation of the cell. Our model prediction
in this section can be tested experimentally by optically
stretching homogeneous elastic spheres of varying sizes us-
ing the optical stretcher.

We next investigate the effects on the strain (g,) of vary-
ing the cortical thickness and the parameter n separately us-

0.026 T T T T T T
Broad stress profile on cell surface
(corresponding to a smaller cell size)
0.024
0.022 B
.g
g 0.02 B
vl
0.018F B
0.016} : ; 1
Localized stress profile on cell surface
(corresponding to a larger cell size)
0.0 14 L L L L L L L L L

0O 2 4 6 8 10 12 14 16 18 20 22 24 26

n

FIG. 5. Effects of surface stress profile on strain experienced for
a solid homogeneous elastic sphere. The strain along the laser axis,
denoted by ¢, (solid line), for a solid homogeneous elastic sphere
subjected to a surface stress profile as given in Eq. (4) computed
using our finite-element model. We can see that e, is sensitively
dependent on the parameter n in Eq. (4). For larger values of n
(corresponding to a more localized stress profile), . is smaller com-
pared to the case of a smaller value of n (corresponding to a broader
stress profile).
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FIG. 6. (Color online) Effect of cortical thickness and surface
stress profile on strain experienced for a suspended fibroblast. We
investigated the effects of varying either the cortical thickness or
the surface stress profile, represented by the parameter n in Eq. (4),
on the strain (g,) obtained at 2.5 s using our viscoelastic finite-
element model. First, cortical thickness was varied from 10% to
25% (dashed blue line: 10%, dotted-dashed red line: 15%, solid
green line: 20% and dotted black line: 25%) while keeping all other
parameters constant. Next, the parameter n was varied from 4 to 24.
The strain (&,) is more sensitive to the variation in the parameter n
than variation in the cortical thickness and is smaller for larger
values of n compared to those cases with smaller values of n. This
shows that cell size contributes more to cellular deformation as
compared to cortical thickness.

ing our three-parameter fluid model. First, we varied the
thickness of the cortical region from 10% to 25% while
keeping the other parameters unchanged. Next, we varied the
value of n from 4 to 24 while keeping the other parameters
unchanged. The material properties of the cell used for this
set of simulations are those shown in Table II which we
obtain from fitting the 2.5 s loading experiment. From Fig. 6,
we see that the strain g, is less sensitive to the variation in
the cortical thickness as compared to the parameter n. In
making our comparison, we note that the change in &, when
we vary the cortical thickness is fairly independent of the
values of the parameter n. Hence, we decided to choose one
value of n (we used n=14 in Fig. 6 which is the midrange
value for the parameter n) to illustrate the typical effect of
varying the cortical thickness on &,. Similarly, we have cho-
sen n=8 and n=20, which are the midrange values for char-
acterizing the stress profile experienced by the malignant and
normal fibroblasts, respectively, to illustrate the effect of the
parameter n on &,. We also observe that the strains e, are
smaller for a larger value of n when compared to those of a
smaller n which is similar to the trend exhibited by the ho-
mogeneous elastic sphere. Thus, our simulation results are in
agreement with the experimental evidence that the smaller
malignant cells deform more compared to their normal coun-
terparts. However, it is the cell size that contributes more to
this cellular deformation than the cortical thickness.
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B. Extent of intracellular stress propagation depends on size
of suspended fibroblasts being stretched

In this section, we study the von Mises stress distribution
within the cell as a function of the cell size [29]. In particu-
lar, we want to see how far the stress propagates into the
cytoplasm when (a) malignant fibroblasts are subjected to a
broad surface stress distribution and (b) normal fibroblasts
are subjected to a localized surface stress distribution. The
von Mises stress from our simulation is computed using the
spring element in the three-parameter viscoelastic fluid
model. The details of the simulation are: the material prop-
erties of both the normal and malignant fibroblasts are set to
identical values (shown in Table II). The thickness of the
actin cortical region is set to 20% for normal cells and 15%
for malignant cells [15].

In Fig. 7, we show the von Mises stress distribution at 2.5
s for the two simulations. The two surface stress profiles are
represented by (a) n=24 (localized stress distribution) denot-
ing normal cells and (b) n=4 (broad stress distribution) de-
noting malignant cells. For (a), we see that the regions with
the highest von Mises stress concentration occur at a region
just beneath the cortical region. This observation is distinctly
different from that observed for (b) in which the region of
highest von Mises stress is in the perinuclear region of the
cell.

IV. DISCUSSION
A. Influence of cell size on the maximal strain

The results of our simple physical model suggest that, to
improve the discriminating capability of the optical stretcher
as a diagnostic tool, cells should be sorted based on size
prior to undergoing optical stretching. By doing so, cells of
approximately the same size will be subjected to similar
stress profiles and any differences in their optical deformabil-
ity will more accurately reflect an inherent variation in their
mechanical properties, hence enabling the device to better
differentiate between the normal and cancerous phenotypes
of the cells being tested.

In our simulations, we have assumed that both the malig-
nant and normal fibroblasts possess identical material prop-
erties in our numerical calculation. If we had incorporated a
lower elasticity and viscosity in our model for the malignant
fibroblast, the difference in the cellular strain obtain between
the normal and malignant fibroblasts would have been even
larger. Thus, our model predictions do not contradict the ex-
perimental results of Guck er al. [12]. Rather, we have shown
that the cellular size, through its effect on the spread of the
stress distribution, contributes relatively more to the cellular
deformation as compared to the cortical thickness.

Our results also rest upon the assumption that the optical
properties are homogenous in both the malignant and normal
cells. It is possible that there will be regions in the cell with
different optical properties, which could lead to a different
distribution of stress on the surface. One possible example is
a smaller malignant fibroblast with a relatively large nucleus
with higher refractive index, which could lead to a stronger
focusing of the light passing through the cell and conse-
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FIG. 7. (Color online) Plot of von Mises stress distribution for normal and malignant fibroblasts. Lighter colors denote higher stress
magnitudes while darker colors denote lower stress magnitudes. The von Mises stress at 2.5 s is obtained from finite-element simulation for
(a) normal fibroblasts subjected to a localized surface stretching (n=24) and (b) malignant fibroblasts subjected to a broad surface stretching
(n=4). For the localized stress distribution, we see that the regions with the highest von Mises stress concentration occur at a region just
beneath the cortical region. This observation is distinctly different from that observed for the broad stress distribution in which the region of

highest von Mises stress is in the perinuclear region of the cell.

quently a more localized stress distribution than assumed. In
this case, the explanation for the different deformability be-
tween the normal and malignant fibroblasts suggested from
the parameters in our model might not hold. Given the com-
plexity of the actual stress distribution on the cell surface
during the experiments, we believe that our model can still
contribute to the understanding of the differences in cellular
response between malignant and normal fibroblasts in the
optical stretcher despite our simple assumptions.

B. Influence of cell size on stress propagation

The size of the suspended fibroblasts, through its effect on
the surface stress profile, affects the intracellular stress
propagation and distribution. This observation is useful as it
allows us to visualize the stress propagation from the cortical
region through to the cytoplasm as a function of the surface
stretching profile. We believe that the two distinct regions of
high von Mises stress concentration for the localized stretch-
ing profile could be a result of the short length-scale force
transmission characteristics of the cortical region. When a
mechanical loading applied to the cell is concentrated on a
localized region of its cortex or cytoplasm, the cellular re-
sponse will depend on the region being probed. Experimental
techniques that apply a localized loading include atomic
force microscopy, magnetic bead twisting, and micropipette
aspiration techniques. At the other extreme, when the entire
cell is subjected to mechanical stress, such as a shear flow or
microplate manipulation, the cellular response will depend
upon the overall compliance of the entire cell. This could be
an explanation for the huge spread of experimental values
reported for the coefficients of elasticity and viscosity. The
results of the different measurements will depend not only on
the model used to extract the relevant elastic or viscous pa-
rameters but also, to a large extent, on the region of the cell
being probed and the extent of the probing mechanisms

(whether it acts over a localized region or the entire cell).

We also believe that different mechanosensitive signaling
pathways may be activated in the optical stretching experi-
ment as a result of the differences in the relative stress dis-
tribution within the interior of the suspended cell. One pos-
sible mechanism is for the cell to wupregulate the
concentrations of actin binding proteins in response to sig-
naling pathway that are mediated through the stretch acti-
vated channels on the membrane surface [39,40]. The loca-
tions on the cell membrane where such channels are
activated could depend on the relative stress distribution in-
duced on the cell surface. We postulate that these activated
channels then transduce the external mechanical forces into
intracellular biochemical signals through the increase in the
cytosolic Ca* level [41] which in turn triggers a cascade of
signaling pathways [42]. One such possible signaling path-
way is the Rho/Rho-kinase transduction pathway which is
involved in the cytoplasmic stiffening of adherent fibroblasts
subjected to shear flow [43]. We thus suggest that fluorescent
tagging be done on actin binding proteins such as filamin A
to investigate how their concentration in the cortical regions
varies as the suspended fibroblasts are subjected to different
stretching profiles. Such investigations could allow us direct
comparison of our simulation results of the location of high
von Mises stress to experimental observations on the regions
of high activity of actin-binding proteins.

V. CONCLUSION

We have described a viscoelastic, axisymmetric finite-
element model that takes into account the spatial heteroge-
neity of cells and have shown that our model can be used to
simulate the stretching of suspended fibroblast cells in the
optical stretcher. The first result is that the higher optical
deformability observed for malignant fibroblasts [12] can be
explained by the difference in the surface stress profile
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(which is related to the cell size). We have shown that the
parameter n which describes the profile of the surface stress
is a more important factor in determining the radial deforma-
tion of the cell than the thickness of the actin cortical region.
This implies that cells with a smaller radius will experience
more stretching compared to cells with a larger radius in the
optical stretcher due to the broader stress profile experienced
by the smaller cells.

The second result suggests that the modes of stress propa-
gation into the cytoplasm are different for normal and malig-
nant fibroblasts. Our simulation shows that the von Mises
stress distribution within the cell is dependent on the surface
stress profiles used. For the localized stretching profile, the
regions with the highest von Mises stress concentration oc-
cur at a region just beneath the cortical region. This pattern is
distinctly different from that observed for the broad stress
distribution in which the region of highest von Mises stress
is in the perinuclear region of the cell. The implication of our
observation is that different mechanosensitive pathways are
activated in the optical stretching experiment as a result of
the differences in the intracellular stress distribution. The ac-
tivation of these different pathways can lead to different mo-
lecular level expression of proteins that in turn affect the
mechanistic properties of the fibroblasts being stretched.
Currently, there is no existing theory that can quantitatively
link mechanistic perturbation to molecular level expression
in the cytoplasm. We believe that our modeling, combined
with other experimental techniques such as molecular imag-
ing, has the potential to contribute further in understanding
mechanotransduction.
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APPENDIX: FINITE-ELEMENT FORMULATION

The governing equation for a viscoelastic three-parameter
fluid consisting of a linear dashpot connected in series to a
Voigt element (refer to Fig. 1) in one dimension is given by

[18]

de(t)  mmp Pelt) (11 + mp) do (1)
+ s =0o()+
ot k ot k ot

m . (5
where ¢ is the time-dependent strain that is a dimensionless
form of the nodal displacement u, o is the time-dependent
stress, 7 is the viscosity of the linear dashpot in series con-
nection with the Voigt element, and 7, and k are the viscosity
and elasticity of the linear dashpot and linear spring of the
Voigt element.

In higher dimensions, the constitutive equation becomes
more complicated to write down. Instead, we should use the
approach outlined in Kaliske and Rothert [44] and consider
two SLSs (refer to Fig. 8) connected in series in order to
mimic the response of the three-parameter fluid in higher
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Ho

M1 m

FIG. 8. Representation of a standard linear solid model. It con-
sists of a single-spring element (u) in parallel connection with a
Maxwell model. The Maxwell model consists of another spring
element (u,) in series connection to a dashpot element (7).

dimensions (refer to Fig. 9). We used a different set of nota-
tion here to represent the parameters of the two SLS in series
to prevent confusion with the parameters for the three-
parameter fluid model.

The representation of the three-parameter fluid model can
be done through the appropriate selection of parameters in
the SLS models to mimic both the fluidlike response of the
dashpot and the creep response of the Voigt element for the
time intervals that we are interested in. First, to mimic the
fluidlike response of the dashpot, we need to set the value of
the single spring element () in the first SLS (refer to Fig.
9) to approaching zero and set the value of the spring ele-
ment in the Maxwell model (u;;) to approaching infinity.
This has the effect of “short-circuiting” the contributions of
these two spring elements in the first SLS for the time inter-
vals that we are interested in. Next, to mimic the creep re-
sponse of the Voigt element, we will need to set the value of
the spring element in the Maxwell model (u,) in the second
SLS (refer to Fig. 9) to approaching infinity. This also has
the effects of short-circuiting the contribution of that spring
element in the second SLS. Using Boltzmann’s principle of
superposition [18], we are able to sum the response of the
two SLS to mimic the response of the three-parameter fluid
model.

The development of the finite-element formulation for the
SLS model (refer to Fig. 8) starts from the general integral
representation of linear viscosity as a one-dimensional equa-

tion as shown below:

k
N11 is the o2 and 12 are
equivalent of 1 M /| the equivalent of
in the three- B kand 1,
parameter fluid % in the three-
model parameter fluid
N2 model

FIG. 9. Representation of the three-parameter fluid model using
two standard linear solids arranged in series. The value of the single
spring element (ug;) in the first SLS is set to approaching zero
while the values of the spring elements in the Maxwell model (u;,
and w;,) for both SLS are set to approaching infinity. These have
the effect of “short-circuiting” the contributions of these spring el-
ements to the response of the two SLS in series, thereby allowing us
to mimic the response of the three-parameter fluid model.
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o(r) = f t T(t—s) 92(s) 4. 6)
0 das
Lt =s) = po+ pye” ', (7)
n="1 (8)
M1

where I'(¢r—s) is the relaxation function and 7; is the relax-
ation time for the Maxwell element in the SLS. Following
the approach outlined in Kaliske and Rothert [44], splitting
the integral into an elastic and a viscoelastic contribution
leads to the elastic stress component oy(¢) and the internal
stress equivalent variable /;(¢) as shown below:

t t
de(s de(s
o(t) :J o ( )ds + f ,u,le_('_‘v)/T'Lds
0 dJs 0 dJs

t
de(s
:,LL()S(I) +f Mle_([_s)/T] ( )ds
0 as

= 0(1) + Iy (1). 9)

The internal stress equivalent variable 4 ,(¢) can be evalu-
ated using the recursive formula given by Ref. [44] and as
shown below:

_ e—At/'rl

At

T

hr11+1 _ e—At/Tlhrll + [Oﬁ” _ 0'8]’ (10)
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n="n (11)
Mo
This recursive determination of the current /"' requires the
quantities o7, and A} of the preceding time step n and, there-
fore, they have to be stored in a database. The shown strain-
driven integration algorithm is unconditionally stable for
small and large time steps and it is second-order accurate.
The extension of Eq. (9) to a fully three-dimensional ap-
proach is easily performed by introducing tensor quantities.
In a multiaxial stress state, the total stress tensor ¢’*! for a
linear elastic Maxwell material is determined from the elastic
contribution a”o+1 and from the internal stress variables 4},
Thus, we can write the stress tensor ¢”*! in a multiaxial
stress state as follows:

P =O‘8+1 +hrlz+l, (12)
0_](‘;+] =D88”+1, (13)
n+l _ —At/mpn —e 8 0ﬂ+l o
W =e H+ y]—At Lay" — o], (14)
m

where D¢ is the fourth-order tensor that is analogous to the
elastic spring constant u, in the one-dimensional case.
Hence, the response of the two SLS in series can be com-
puted individually using Eq. (1) so that we obtain u g,
(which is the nodal displacement from the first SLS that
mimics the response of the dashpot in the three-parameter
fluid model) and u,,,;,, (Which is the nodal displacement from
the second SLS that mimics the response of the Voigt ele-
ment in the three-parameter fluid model). Using Boltzmann’s
principle of superposition [18], the total nodal displacement
vector u will then be given by the sum of 1,0, and 14;,4-
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