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Bacterial quorum sensing (QS) has attracted much interest as the manifestation
of collective behavior in prokaryotic organisms once considered strictly solitary.
Significant amount of genetic, biochemical, and structural data which, has been
accumulated in studies on QS in many species allows us to map properties of
specific molecules and their interactions on the observed population-wide bacterial
behavior. The present review attempts to give a systems biology perspective on the
structure of genetic regulatory networks that control QS and considers functional
implications of a variety of design principles that recur in the organization of these
networks across species.  2009 John Wiley & Sons, Inc. WIREs Syst Biol Med 2009 1 45–60

Q uorum sensing (QS) refers to the ability of
bacterial populations to coordinately regulate

gene expression in response to changes in the local
population density. Some examples of such collective
behavior include secretion of antibiotics,1–3 produc-
tion of extracellular matrix,4–6 emission of light,7,8

and switch to swimming or swarming motility.9–11

The cooperativity is achieved through the exchange of
signaling molecules that are produced by individual
bacterial cells and secreted in the surrounding extra-
cellular space. QS therefore represents an example of a
cooperative cell-cell communication12 that occurs at a
distance rather than through a direct physical contact
of interacting cells.

Since the discovery of this phenomenon in
marine luminescent bacteria Vibrio fischeri, a sym-
biont of a tropical squid, and its free-living relative
Vibrio harveyi,13–15 the QS research has evolved into a
large and flourishing field that provided a totally new
perspective on the general physiology, genetics, ecol-
ogy, and pathogenicity of microorganisms. Indeed,
the discovery of the QS promoted a dramatic shift in
the microbiologist’s perception of bacteria from dull
solitary organisms incapable of any complex cooper-
ative behavior to agile team players who continuously
survey their environment for the presence of their kin,
competitors, and enemies.

Comprehensive coverage of the vast field of
QS, even in a succinct form, is far beyond the
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scope of this review. Historic perspective and mod-
ern views on the physiology and molecular biol-
ogy of QS in individual bacterial species as well
as extensive comparative analyses across multiple
species can be found in many excellent reviews
written by the pioneers of this field.15–39 Burgeon-
ing development in the past decade resulted in
branching and diversification of the QS research.
Thus, an unanticipated complexity of bacterial com-
munication within the species, between close and
distant taxons as well as with eukaryotic organ-
isms (interkingdom signaling),40 fostered the emer-
gence of a new discipline of bacterial sociobiol-
ogy that focuses on the evolutionary and eco-
logical aspects of bacterial communication and
cooperation.39,41,42 Another newly formed branch
studies QS from the perspective of the host-pathogen
interactions43–46 and seeks to develop novel antibac-
terial drugs that will interfere with QS and prevent
or reduce bacterial pathogenicity toward animal47–49

and plant45,50 hosts.
The present contribution attempts to give a

systems biology perspective on the intracellular mech-
anisms that regulate QS behavior on the molec-
ular level. Unicellular nature, genetic tractability,
and availability of complete genomic sequences have
long placed bacterial regulatory networks into the
focus of systems biology.51–54 The QS phenomenon
in particular provides an unprecedented opportu-
nity to study molecular origins of collective mul-
ticellular behavior and perform comparative anal-
yses of distinct network designs which evolved
under the pressure of diverse ecological require-
ments.
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WHAT IS ‘QUORUM SENSING
NETWORK’?

I refer to quorum sensing network (QSN) as a network
of signaling and gene regulation events that are
responsible for the production and perception of the
signaling molecules as well as for the final outcome
of communication—regulation of target genes whose
products directly control specific functions, e.g.,
encode bacterial flagella. Depending on the complexity
of the network, several layers of regulatory molecules
may intercalate between the signaling molecules, also
known as autoinducers (AIs), and the QS transcription
factors (QSTRs) responsible for regulation of the
target genes. Practically in all studied cases the
QSN does not stand on its own but is instead
imbedded into a complex regulatory network which
integrates multiple environmental stimuli, such as pH,
temperature, and the availability of nutrients.

Typically, the QSN consists of multiple compo-
nents which can be placed into several functional cate-
gories. (1) Enzymes that produce signaling molecules,
AI synthases, and the respective AI secretion systems.
(2) QS sensor systems and transduction pathways
that connect the receptors for signaling molecules
to the regulators of QSTRs and possibly integrate
other sensory inputs. (3) QSTRs and their direct reg-
ulators—proteins, RNA species, or metabolites that
directly affect the activity of QSTRs themselves or
regulate their transcription and translation.

QS SIGNALING MOLECULES, THEIR
SYNTHASES AND SENSOR SYSTEMS

The choice of a signaling molecule, the physical mes-
senger of cell–cell communication, imposes specific
requirements on the presence and molecular properties
of the components of the QSN that directly interact
with the messenger. Indeed, membrane permeability,
diffusivity, and stability to nonenzymatic degradation
in the environment are all important biophysical prop-
erties of a signaling molecule that specify its signaling
range and the means of its secretion and detec-
tion. Historically, two QS-signaling systems came to
the limelight first: N-acylhomoserine lactones (AHLs)
of Gram-negative bacteria16,23,55,56 and peptides of
Gram-positive species.57–60 Early studies suggested
that AHLs are low-molecular-weight metabolites that
can passively diffuse through the cellular membranes.
Many of these AIs were shown to bind directly to
the QSTRs influencing their oligomerization state and
affinity to the DNA cis-regulatory sequences.55 Within
this early conceptual model, AHLs require neither spe-
cial secretory machinery nor cell-surface receptors. In

contrast, peptides of Gram(+) bacteria are actively
extruded from the cells and detected by transmem-
brane receptors61 or actively imported back into the
cells.62,63 Further studies, however, reduced the divide
between the two QS systems and identified a number
of common features. Thus, it was shown that some
AHLs with long acyl chains can hardly penetrate
the membrane and thus require assisted transport.64

Moreover, in some Gram(–) bacteria, e.g., Vibrio
species,35 AHLs are detected by cell-surface receptor
kinases in a Gram(+) fashion.

AHLs are synthesized from metabolites readily
produced in bacterial cells.26,27 The best characterized
family of AHL-synthases are homologs of V. fischeri
LuxI, which are usually encoded in pairs with
matching LuxR-type QSTRs.16,65,66 Other, non-LuxI-
type synthases, such as AinS (V. fischeri) and LuxM (V.
harveyi),67 with biochemical properties both similar
and distinct from LuxI-type enzymes56 have also been
described. The length of the acyl chain is an important
property of an AHL molecule. Indeed, chains shorter
than four result in highly chemically unstable AHLs,
which renders them generally unsuitable for cell–cell
communication,38 while AHLs with chains longer
than 10 poorly diffuse through the cell membranes and
might require transporters for their excretion.64 Often,
a single AHL synthase can produce a broad repertoire
of AHLs with varying lengths of acyl chains.68

Importantly, bacterial genomes also encode enzymes
that degrade AHLs. Regulated activation of these
enzymes, for example, in response to a stress signal
ppGpp, can efficiently abrogate QS signaling.69,70

Peptide messages of Gram(+) species are
genetically encoded as precursor peptides and do
not require synthases per se.60,61,71 Instead, these
bacteria encode transmembrane enzymes, which
proteolytically process the precursors while extruding
them into the extracellular space. These proteins
thus serve the function of synthases and exporters
simultaneously. Two strategies are in use for detection
of peptides in the environment: receptor histidine
kinases61 and active importers, usually from the family
of ABC transporters.62 Once imported into the cell,
the peptides are sensed by intracellular receptors, such
as Bacillus subtilis phosphatase Rap, whose activity is
repressed by peptide binding,72 thus preventing it from
dephosphorylating a transcriptionally active response
regulator.62

Both Gram-positive and Gram-negative species
utilize a variety of furanones, collectively known
as AI-2.30 AI-2 molecules are a result of sponta-
neous cyclization of 4,5-dihydroxy-2,3-pentanedione
(DPD), which together with homocysteine are the
products of the LuxS group of enzymes first described
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in V. harveyi and presently found in over 50 bacterial
species.21,30,73,74 Sensing of AI-2 as a QS signal
has been studied in detail in V. harveyi and other
marine vibrios in which AI-2 is bound by periplas-
mic protein LuxP and this complex is sensed by the
transmembrane receptor LuxQ.75 A different mode of
interaction, which involves AI-2 internalization and
degradation, has been described in enteric bacteria.76

In these species, AI-2 is phosphorylated by intracellu-
lar kinase LsrK. AI-2-P then binds to and deactivates
transcriptional repressor LsrR, which represses the lsr
operon. First four genes of this operon (lsrA–lsrD)
encode an AI-2-specific ABC importer, while prod-
ucts of the following genes, e.g., lsrG, are involved in
the subsequent degradation of AI-2-P. Appearance of
AI-2 in the extracellular medium thus first causes its
low-level and possibly nonspecific internalization that
activates the lsr operon, this in turn causes specific
import and degradation of the messenger.

Expansion of the QS research resulted in the
discovery of other signaling molecules with diverse
chemical nature. In addition to AHLs, Gram(–) bacte-
ria were also found to produce alkyl-quinolones,77,78

DSF (cis-11-methyl-2-dodecenoic acid),79 and fatty
acid methyl esters.80 Recently, the nature of an elusive
Vibrio cholera AI CAI-1 has been identified and found
to belong to yet another class of chemical compounds,
3-hydroxytridecan-4-one.81 Not restricted to peptide
signaling only, some Gram(+) bacteria, e.g., strep-
tomycets, also synthesize γ -butyrolactones.82 Future
screens designed to identify bacterial cell–cell com-
munication mediators will likely reveal additional
signaling molecules.

NETWORK CORE: THE LUXR/LUXI
PARADIGM IN GRAM-NEGATIVE
BACTERIA

Already upon their original identification,14 QSTR
LuxR and the respective AI synthase LuxI were shown
to be essential proteins for the QS regulation of lumi-
nescence in V. fischeri. A regulatory subnetwork based
on the two genes, their protein products, and LuxI-
generated AI rapidly became a paradigm for the QSN
organization in Gram(–) bacteria.16 Phylogenetic anal-
yses of many genes encoding LuxR/LuxI homologs in
various species65 indicated that these genes coevolved
as mutually regulating couples. This justifies their
contemporary consideration as core regulatory mod-
ules of the AHL-based QSNs. Moreover, phylogenetic
analysis shows that luxR/luxI homologs fall into two
distinct classes.83 Class A systems are widespread
among various divisions of proteobacteria and their

LuxR-type proteins are typically transcription acti-
vators. Class B systems, identified so far only in
γ -proteobacteria, show a distinct pattern of genomic
organization and their QSTRs are mostly repressors.
LuxR-type QSTRs of both classes possess N-terminal
AI-binding and C-terminal DNA-binding domains.
Binding of cognate AIs to the LuxR-type proteins in
stoichiometry 1 : 1 may result in either increase (class
A) or attenuation (class B) of binding to the respective
DNA cis-elements. Most of the class A QSTRs, such as
the prototypical V. fischeri LuxR itself, are activators
that require their cognate AIs for binding to DNA and
transcriptional activation.27,83 Competence for DNA
binding in most of these QSTRs is correlated with
their oligomerization state. Typically, these QSTRs are
monomers in the inactive AHL-free state but dimerize
efficiently in response to the AHL binding. This dimer-
ization might be responsible for the observed protein
half-life extension of the AHL-bound QSTRs.84–86

Once dimeric, they strongly and specifically bind to
the inverse-repeat DNA sequences of about 20 bp
known as lux-type boxes.16 Some exclusions from the
above rules have also been reported. Thus Erwinia
caratovora CarR was shown to be dimeric and com-
petent to bind DNA already in the AHL-free state
and formed higher-order oligomers in response to the
AHL addition.87

More recently, a number of LuxR-type repres-
sors, whose transcription repression is relieved by
binding to AHLs, has been described.88–92 Proteins of
this type have been shown to be dimeric already in the
AHL-free state,90 which is consistent with their ability
to bind palindromic DNA sequences and repress tar-
get genes in the absence of AHLs. Binding of AHLs to
QSTRs triggers a conformational switch to the state
that can no longer bind DNA. The complex releases
DNA and transcription of target genes is activated.
Interestingly, in both activator and repressor cases,
accumulation of AIs effectively results in activation of
the target genes.

While the ability of LuxR-type QSTRs to
increase or reduce their affinity for DNA in response
to AI binding appears to be a fundamental molecular
property, their activator or repressor function should
depend on the position of the respective DNA cis-
element within the upstream regulatory sequence of a
specific gene. Thus, conceivably the same QSTR could
be activator for some and repressor for other target
genes. Despite this theoretical possibility, class A
QSTRs have been largely characterized as activators,
while those of class B as repressors. ExpR1 and ExpR2
QSTRs recently characterized in E. caratovora may
present an example of an alternative behavior.93,94 In
the AHL-free state, both proteins are DNA-bound and
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possess other properties of class B QSTRs. However,
they both activate transcription of regulatory mRNA-
binding protein RsmA. 3-Oxo-C8-HSL selectively
binds to ExpR2 and releases it from DNA, thus
partially attenuating rsmA transcription. Another E.
caratovora-produced AHL, 3-oxo-C6-HSL, binds to
both QSTRs and releases them from DNA, further
reducing rsmA transcription. Ironically, since RsmA
is a repressor of the target genes (plant cell wall
degrading enzymes), transition to the high-density
state (‘transition to quorum’) results in the activation
of target genes also in this case.

Importantly, luxR/luxI modules of different
classes exhibit distinct genomic organization and reg-
ulatory interactions. Class A activators are presently
understood the best. As shown schematically in Fig-
ure 1(a), a LuxR homolog is typically encoded sep-
arately from the operons it regulates and luxI is
transcribed divergently or in the same direction as
the luxR homolog. Normally, expression of the luxI
homolog is positively regulated by the LuxR-type
QSTRs.16 Provided that LuxI-type synthases gener-
ate AI molecules necessary for the activity of the
QSTRs, this activation of luxI transcription by LuxR
constitutes the classical QS positive feedback loop that
amplifies the intracellular production of AI in response
to the extracellular AI. Although in this case produc-
tion of the monomeric transcription factor remains at
the same level, the copy number of the mature dimeric
QSTR increases due to the increased formation of the
LuxR-AI complex. Additional positive feedback loop
may be provided by autoactivation of luxR transcrip-
tion. This autoregulation can also amplify the copy
number of the monomeric transcription factor and has
been demonstrated at least for some QSTRs, e.g., for
the prototypical V. fischeri luxR95 and E. caratovora
carR.87

In contrast, class B luxR/luxI modules of γ -
proteobacteria exhibit strikingly different patterns of
genomic organization and coregulation (Figure 1(b)).
Similar to the described first esaR/esaI module,88,90

other characterized representatives of this class (e.g.,
expR/expI of E. chrysanthemi92 and ypsR/ypsI of
Y. pseudotuberculosis96,97) are typically transcribed
convergently with a small overlap between the
transcribed frames of 20–25 bp, significance of
which is not presently understood.89,96 Unlike in
class A, transcription of the luxI homolog generally
is not directly regulated by the LuxR homolog
and is controlled by other regulators.97 As the
QSTRs of this class are normally transcriptional
repressors, autoinhibition of the luxR transcription
is not uncommon but not obligate.90,97

In all known systems, mutual regulation within
the luxR/luxI module accounts for only a part of the
overall transcription regulation of the luxR and luxI
homologs. Both may possess constitutive promoters
as well as promoters regulated by nutrients,98

signaling molecules,99 and upstream transcription
factors including other QSTRs.97,100

OTHER TYPES OF QSTRS

While characterized best, luxR/luxI paradigm does
not exhaust all possibilities in bacterial QSNs. Even
in Gram(–) species, V. fischeri LuxR homologs are
not the only known QSTRs. Ironically, the best
characterized examples of alternative QSTRs have
been described in Vibrios, the same genus that
gave birth to the luxR/luxI paradigm. Starting with
the luminescence regulator LuxR in V. harveyi101

(not related to V. fischeri LuxR, the protagonist
of the LuxR class of QSTRs), a number of
dimeric transcription factors that do not require AI
molecules to bind to DNA were identified. Other
representatives of this class of QSTRs are HapR in
V. cholera102–104 and LitR in V. fischeri.105 Sequence
and structure106 homology indicate that these QSTRs
belong to a large class of TetR transcription factors,
dimeric proteins that bind palindromic cis-regulatory
DNA sequences.107 The protagonist of the class,

(c)

Gram (+) (S. aureus)
agrA

agrB agrD

(b)

R (EsaR)

I (EsaI )
Class B (P. stewartii)

(a)

R (traR) I (traI)

Class A (A. tumefaciens)

FIGURE 1 | Genomic organization and mutual regulation within the QSN core module. (a) Class A luxR/luxI module of Gram(–) bacteria. (b) Class
B luxR/luxI module. (c) Representative example of Gram(+) QSN core module. Transcription regulator AgrA activates transcription of the agr operon.
agrD and agrB encode AI peptide precursor and peptide extruding enzyme respectively. Two strands of DNA are represented by separate lines. Open
boxes symbolize cis-regulatory elements. Regulatory interactions are shown by hammerheads (negative) and arrows (positive). Interactions found
only in a subset of characterized systems are drawn by dashed line.
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transcription repressor TetR controls the tetracycline
exporter tetA, whose expression is activated when
tetracycline binds to the TetR dimer and TetR
dissociates from the tetA promoter.107 Intriguingly,
HapR, whose structure was recently determined,106

also has a putative ligand-binding domain. Although
TetR factors are generally considered as transcription
repressors, their actual mode of action depends on
the specific gene. Thus, HapR, most known for
its repression of the V. cholera virulence master-
regulator aphA, is also an activator of hemagglutinin
HA/protease102 and DNA uptake regulator.108 As
many other TetR transcription factors, HapR also
represses its own expression.109 The QS regulation
of this class of QSTRs is believed to be performed
by sRNA species, which effectively annihilate QSTR
mRNA at low population density110–112 (see a detailed
discussion below).

QSTRs of Gram(+) bacteria, which are usually
represented by the response regulators of two-
component sensor systems, are typically found to
positively regulate themselves and the ORFs encoding
peptide precursors and their exporters.61 This ensures
that copy numbers of both the QSTRs and the
signaling molecules are amplified in response to
the QS signal. Genomic organization of Gram(+)
QSN core modules is species specific.58 The QSTR,
signaling peptides, their receptors, and exporters may
be encoded by the same operon, as in the case of agr
operon of Staphylococcus aureus60,113 (Figure 1(c)),
or split into several operons co-regulated by the
phosphorylated QSTR.58,61

IS THERE A SWITCH IN QSN AND
WHAT FLIPS IT?
Principles that underlie operation of the QSN have
captivated attention of researchers since the discovery
of the QS phenomenon. The main function of the
QSN, to control the copy number of the QSTR in
response to the changing extracellular concentration
of AI, can be achieved in two distinct ways. The QSN
may operate as a rheostat by gradually changing the
copy number of the QSTR and thus the expression of
target genes. Alternatively, it may operate as a bistable
switch with two distinct ‘on’ and ‘off’ states.114,115 In
the latter situation, an individual cell would be likely
found in either uninduced or fully induced states,
while cells with intermediate expression levels of the
QSTR would be extremely rare.116,117

A well-known fact in mathematical sciences
that positive feedback is a necessary condition for
multistability115,118 prompted a hypothesis that the
core luxR/luxI module may, in fact, implement

such a bistable switch. Assuming that the mature
QSTR is a dimer that activates its own transcription,
mathematical modeling of a luxR/luxI-type module
demonstrated that, in principle, this network layout
alone is sufficient to provide a bistable switching
behavior.119,120 Further analysis performed with
realistic values of network reaction rates121 identified
a number of constraints imposed on this QSN
layout and suggested its poor performance as a gene
expression switch under the conditions of molecular
noise.122,123 Importantly, the luxR/luxI module may
function as an autonomous, self-sufficient switch only
if the QSTR is a relatively unstable dimer and the
binding between the AI and the LuxR-type monomer
is not very strong.121 While this assumption implicitly
made in Refs [119,120] appears to hold for some QS
systems,84,124 it is not universal for all luxR/luxI
modules. Thus, Agrobacterium tumefaciens QSTR
TraR forms practically irreversible complex with its
cognate AI.125 In fact, the molecule of AHL was
found so deeply buried into the protein 3D structure
that it was suggested that the complex forms only
during TraR translation. Translated in the absence of
AHL, TraR is misfolded, poorly soluble, and is rapidly
degraded.85,86,126

Recent analyses of QS in V. harveyi and V.
cholera suggested an alternative mechanism that
can provide robust switchlike behavior without
bistability.110 In both species, AI signals are trans-
mitted to the transcription regulator LuxO, which is
phosphorylated in the absence of AIs (low cell den-
sity). Phosphorylated LuxO activates transcription of
several Qrr small regulatory RNAs. In cooperation
with chaperone Hfq,127 these sRNAs form stable
complexes with mRNAs of QSTRs LuxR (V. har-
veyi) or HapR (V. cholera). The Qrr sRNAs sequester
QSTR mRNA and, either through the formation of
an untranslatable complex or through the accelerated
mRNA degradation, effectively prevent its translation.
As opposed to repression by transcription factors,
this type of post-transcriptional regulation results in
the destruction of both the target (QSTR mRNA)
and the regulator (Qrr sRNA) (Figure 2(a)). The tar-
get and regulatory RNAs mutually titrate each other
and the outcome of their competition is completely
defined by their respective copy numbers, which in
turn sensitively depend on the rates of transcrip-
tion. If transcription rate of either regulator or target
(potentially both) depends on the concentration of AI,
this mutually antagonistic interaction between RNA
species may result in an ultrasensitive response128,129

of the QSTR copy number to a gradual change in the
AI concentration.110 Thus, rapid, switchlike transition
to quorum can be, in principle, achieved in a narrow
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FIGURE 2 | Regulation of QSNs by mutual inhibition. (a) RNA–RNA switch in the QSN of V. harveyi. (b) RNA–RNA switch in the QSN of S. aureus.
The QS positive feedback loop of agr operon is shown schematically. (c) Protein–protein mutual inhibition operates as a switch in A. tumefaciens
QSN. AAI is Agrobacterium AI. S symbolizes substrates of AI synthase TraI. (d) Typical ultrasensitive behavior for expression of the QSTR and its
inhibitory regulator schematically represented as a function of the extracellular concentration of AI. Small open boxes represent complex formation. Ø
symbolizes eventual degradation of the inhibitory complex. RNA species are shown as rectangles and proteins as ovals. Translation of mRNA species
is shown by open arrowheads.

range of changing concentration of the extracellular
AI (schematically illustrated in Figure 2(d)).

The RNA-based mutual-antagonism switching
mechanism has been also reported in other QSNs.
Perhaps the oldest known example of this type of
regulation is provided by RNAIII regulatory sRNA
of S. aureus agr system.130 RNAIII sequesters and
inhibits translation of mRNAs for transcription factor
Rot and protein A using almost the same mechanism
as Vibrio Qrr sRNAs (Figure 2(b)). Presumably,
activation of agr QSN network by its cognate AI
peptide results in a similar ultrasensitive regulation
of Rot. In addition, RNAIII forms an activatory
complex with hla mRNA, which encodes α-hemolysin.
Given that hla is repressed by Rot, the transition to
quorum may result in a sharp switch between rot
and hla.58 Post-transcriptional control by small RNAs
has recently become a major theme in prokaryotic
gene regulation131,132 and has attracted vivid interest
among experimentalists and theoreticians alike.133–136

Of particular prominence in the context of QSNs137 is
the regulatory motif based on the post-transcriptional
regulator known as CsrA (in E. coli) or RsmA (in
Pseudomonas aeruginosa, E. caratovora, and others)
and the small RNA CsrB (RsmB).132 The homodimeric
CsrA/RsmA-type proteins mostly act as inhibitors
of target genes by sequestering their mRNAs.
Transcription of CsrB/RsmB sRNAs, which can bind
simultaneously up to nine CsrA dimers,132 results
in fast and efficient sequestration of CsrA/RsmA
repressors and activation of the target genes. In E.
caratovora, repressor of plant cell wall degrading

enzymes RsmA is under direct transcriptional control
of QSTRs ExpR1 and ExpR2, and the respective
sRNA RsmB is regulated by a GacS–GacA two-
component phosphorelay activated in response to an
as yet unknown extracellular signal.138

Mutual-antagonism switch of the QSN, how-
ever, does not have to depend on sRNAs. It has
been long known that the functionality of A. tume-
faciens QSN critically depends on the antiactivator
TraM.139,140 Knocking this protein out resulted in a
constitutively high copy number of the QSTR TraR
and a lockup of the network in the high-density, ‘quo-
rum’, state. Recent work has demonstrated that TraM,
whose expression is activated by the TraR dimer, is
a homodimeric protein that forms highly stable pro-
tein complexes with TraR (two TraR dimers : two
TraM dimers) and effectively inactivates the QSTR
through the formation of this transcriptionally inac-
tive complex141 (Figure 2(c)). Mathematical analysis
of the A. tumefaciens QSN142 confirmed that TraR
and TraM form a mutually antagonistic protein couple
and demonstrated that they can produce an ultrasen-
sitive switchlike transition to quorum in response to
the AI signal (Figure 2(d)).

INTEGRATION OF QUORUM SENSING
INTO GLOBAL GENE NETWORKS

Recent advance in understanding of bacterial gene
networks demonstrated that the QSNs receive
multiple regulatory inputs from various modules as
well as co-regulate many groups of target genes
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together with other networks and motifs.143 The
complexity of the regulatory cross-talk between the
QSNs and other elements of the cellular control
network varies from relatively low, such as in the
well-understood case of traR/traI QSN that controls
conjugal transfer of A. tumefaciens Ti plasmids,98 to
exceptionally high, such as in the QS circuitry of P.
aeruginosa.100,144,145

If bacterium possesses several QSNs, they may
cooperate following a variety of design patterns.
Thus, several well-characterized examples of parallel
QSN connection have been described in Vibrios.35

In V. harveyi, at least three QS systems operate
in parallel111: an AHL molecule HAI-1 and two
interspecies signals CAI-1 and AI-2. The three
signaling molecules are detected by their respective
dedicated receptor histidine kinases LuxN, CqsS, and
LuxQ, respectively. However, downstream of these
receptors, the three signals come together as the
common phosphotransferase protein LuxU collects
the phosphates produced by the individual receptors
and transfers them to the common response regulator
LuxO, which in turn controls transcription of the
small regulatory RNAs. Similar organization has been
reported for V. anguillarum QSN,146 while V. cholera
seems to have two parallel QSN inputs mediated
by generic signals CAI-1 and AI-2.147 It has been
reported that different AI inputs of the parallel QSN
of V. harveyi translate into distinct levels of the master
QSTR LuxR148; however, the mechanisms underlying
this specificity are not yet completely understood.

A classical example of sequential arrangement
of QSNs is provided by P. aeruginosa in which
the lasR/lasI system has been shown to activate the
rhlR/rhlI QS core module.149,150 Another instructive
example of hierarchical QSN organization has been
described in V. fischeri, veteran of the QS field.35

Recent research has demonstrated that, similar to
other Vibrios, the sRNA-based ain QS system is
the primary QSN also in this organism.151 Receptor
kinases detect at least two parallel inputs of the
ain QSN—AinS-produced C8-HSL and AI-2—and
through a LuxU-LuxO type phosphorelay control
expression of LitR, a homologue of V. harveyi
LuxR. LitR is thought to regulate the early phases
of squid colonization, e.g., repress bacterial motility,
and positively regulate the luxR/luxI QSN.151,152 Full
activation of the luxR/luxI QSN, which requires
higher population density for the transition to quorum
(> 1010 cells/ml), results in the maximal induction of
the lux operon as well as activation of at least 18 other
genes.153

As microbiologists characterize more regulatory
network motifs, it becomes increasingly clear that

bacteria utilize essentially all of them in various com-
binations with the QSNs to achieve maximal flexibility
in the control of gene expression. Rcs phosphorelay
system,154 described originally in Escherichia coli,
provides an example of such a motif. Receptor kinase
RcsC relays phosphate to the response regulator RcsB
by means of the phosphotransfer protein RcsD. While
some genes can be directly regulated by the RcsB
homodimer, others require a cofactor RcsA, which
forms a heterodimer with RcsB.154 In E. amylovora
and Pantoea stewartii, the cps operon responsible for
the synthesis of capsule exoplysaccharide is under the
control of the RcsA–RcsB heterodimer.155 Recently, it
has been shown that in P. stewartii QS controls cap-
sule production through the regulation of RcsA.4,156

In an ingenuous design, the prototypical repressor
EsaR binds to a site between the weak constitutive
promoter of RcsA and the strong autoinducible pro-
moter, as shown in Figure 3(a). At high population
density, the EsaR-mediated repression is relieved and
massive quantities of RcsA are produced in a positive
feedback loop.156 As RcsA–RcsB also represses the
flagella production, transition to quorum results in a
switch between motile and sessile, capsule protected,
life styles. Presumably, since RcsB is directly regulated
by the uncharacterized ligand(s) of the RcsC sensor
kinase, this integration design allows for the detection
of coincidence (or logical AND operator) between QS
and specific extracellular stimuli. This control mode,
however, remains to be tested experimentally. Boolean
AND operator between QS and another extracellular
stimulus can be also achieved by hierarchical expres-
sion control as exemplified by A. tumefaciens QSN.
The requirement for the presence of a specific plant-
produced nutrient, octopine, is fulfilled by placing the
QSTR traR within the opine-activated operon occ.125

Another motif frequently found together with
QSNs is the RsmA/RsmB protein–RNA regulatory
system, which has been already discussed in this
review. In E. caratovora, sRNA RsmB is under the
control of a GacS–GacA two-component system,
while RsmA is positively regulated by ExpR1 and
ExpR2.93,94 When quorum is reached, both ExpR1
and ExpR2 are removed from the DNA and the
expression of virulence factors, which were repressed
in the absence of AHLs by RsmA, is activated. The
same result could have been achieved, in principle, by
an unidentified ligand of GacS through the activation
of RsmB transcription. Thus, it can be hypothesized
that the resulting QSN integration layout implements
a logical OR operator allowing activation of the target
genes either in response to the unknown signal or upon
reaching quorum (Figure 3(b)).
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FIGURE 3 | Integration of quorum sensing with other sensory inputs. (a) Boolean AND logical circuit in the regulatory network of P. stewartii.
(b) Boolean OR in E. caratovora. RNA species, except RsmB, are omitted for brevity. Notations are the same as in Figure 2.

A recent addition to the theme of signal integra-
tion is the recognition that the QSNs participate in the
regulation of various cellular trends through the per-
vasive bacterial second messenger c-di-GMP.157–159

Thus, c-di-GMP has been shown to positively regu-
late the formation of biofilm in a number of species
including V. cholera.160 In a recent study,161 Bassler
and colleagues demonstrated that in V. cholera the
QSTR HapR regulates biofilm formation through two
parallel pathways. Firstly, HapR binds to and directly
represses the expression of the biofilm master reg-
ulator vpsT. In addition, HapR regulates a number
of genes encoding proteins that generate and destroy
c-di-GMP. The net result of this regulation is the
decreased production of c-di-GMP in the state of
quorum and, thus, downregulation of biofilm forma-
tion. While this exciting new story only begins to
develop, it is already clear that QSNs, together with
other extracellular-regulated networks, are involved
in the c-di-GMP-dependent gene regulation in many
bacterial species.34,79,162–164

CONCLUSION

QS gives bacteria a glimpse of the complex surround-
ing environment including the information on the
presence of other cells of the same and distinct species.
The QS detection mechanism is based on the produc-
tion and reception of diffusible chemical molecules.
Local concentration of the AI(s) in the immediate
vicinity of the cell is the only actual extracellular input
for the decision-making QSN. Given this information,
a bacterium cannot distinguish between the situations
when it is surrounded by a large number of other AI-
producing cells or when it is enclosed alone in a small

diffusion-impermeable compartment.165,166 Owing to
this inevitable ambiguity, the precise function of QS
should be interpreted within the context of a specific
ecological niche typical to the life style of the species
in study.

Generalizing the design of a few currently well-
characterized QSNs, it is tempting to hypothesize that
all QSNs probably contain some form of a switch
based on RNA–RNA, RNA–protein, or protein–pro-
tein mutual-antagonism interaction, which may or
may not ensure the bistability of the whole network.
The classical QS positive feedback loop implemented
in all QSNs in one or another way amplifies the extra-
cellular AI signal and likely trips the switch rather
then encompasses the switch itself. Despite some the-
oretical arguments in favor of bistability, whether the
QSNs are mostly ‘rheostats’ or ‘switches’ still remains
to be determined experimentally. A recent test of
this hypothesis in V. harveyi148 resulted in a conclu-
sion suggesting that its QSN operates in a ‘rheostat’
mode. However, the possibility that some of the QSNs
exhibit genuinely bistable behavior still remains open.

QSNs are typically integrated with other
bacterial sensory/decision-making networks to achieve
precise and flexible control of gene expression. Several
network motifs found ubiquitously across species
enable bacteria to combine the QS signal with other
signaling inputs using all three basic logic operators
(AND, OR, and NOT), which are necessary to
build Boolean decision rules of any desired degree
of complexity. This opens a potential for cellular
differentiation based on the spatial variation of
environmental conditions throughout the population
habitat, e.g. within a biofilm.167–173 Indeed, the
relationship between QS and bacterial multicellular
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morphogenesis has recently become an area of rapid
expansion.39,160,161,174–177 Future research will result
in a major progress in understanding of the molecular
mechanisms of QS and the connections between the
QSN designs and the functional role of QS in the
bacterial life style.

BOX1: MATHEMATICAL MODELING
OF THE QSN DEMYSTIFIED
Mathematical modeling has become a powerful tool
of biological research and its area of application
continues to expand.118,182 Even a relatively simple
model that describes temporary dynamics of the QSN
in terms of ordinary differential equations can shed
light on the principles of its operation and reveal
modes of behavior that are possible for a given
network design. Conversely, it may also show that
some experimentally observed behavior cannot be
achieved by a hypothesized network layout and thus
additional experimental work is warranted to identify
missing or incorrectly characterized network elements.

To describe mathematically the dynamics of
a hypothetical QSN shown in Figure 4(a) (generic
layout of the luxR/luxI type module, adopted from
Ref. [121]), one needs to describe how concentrations
of the involved proteins, RNA species, and AI change
in time. This can be done by using the mass-action
rate law of chemical kinetics adapted to model
complex cellular processes, such as transcription and
translation.119,120,183,184 For example, we can describe
the rate of change for the concentration of luxR-like
mRNA r as follows:

dr
dt

= k1 − k2r.

Here, according to the network layout, it is
assumed that mRNA r is transcribed and degraded
constitutively with rates k1 and k2 respectively.
The mRNA r is then translated into a monomeric
protein R, which reversibly binds a molecule of
AI A (index i indicates intracellular concentration)
to form complex P, which in turn reversibly
dimerizes into a mature QSTR D. Describing QSTR-
activated transcription of I (LuxI-like AI synthase),
we assume that the RNA polymerase is abundant,
while the availability of activator D is the rate
limiting factor. However, I promoter has a maximal
rate of transcription initiation and excess of D
cannot speed up the transcription past this maximal
rate. These requirements can be captured by the
Michaelis–Menten kinetic law and the resulting rate
of change for the mRNA concentration i becomes

di
dt

= k3D
K4 + D

− k5i.

Assuming abundance of ribosomes, translation
of mRNA can be represented as a simple first-order
reaction with a rate proportional to the mRNA
concentration. Taking R protein concentration R as
an example, we can describe the rate of R change as
follows:

dR
dt

= k6r − k7R − k8R · Ai + k−8P.

The four terms in the above equation represent
mRNA translation, protein degradation, formation of
complex P, and its dissociation, respectively. Likewise,
for the concentration of AI, which is continuously
produced by LuxI, the rate of concentration change
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is as follows:

dAi

dt
= k11I − k8R · Ai + k−8P + k14(Ae − Ai),

where the last term represents passive diffusive
exchange between intra- and extracellular molecules
of AI. The latter serves as a free parameter of the
model whose variation dictates the entire intracellular
dynamics of the QSN.

Once the complete model is constructed (in this
case, it consists of seven equations), it can be ana-
lyzed numerically on the computer. However, in some
simple cases, like the example considered, the behav-
ior of the model can be also studied analytically, e.g.
by reducing the number of variables.119,121,142 Thus,
applying standard methods of chemical kinetics it can
be shown121 that dAidt is a function of Ai, as shown
in Figure 4(b) at three different values of Ae, the
extracellular concentration of AI. Intersections of the

function with zero axis symbolize stationary states of
the QSN. The S-shaped form of the function ensures
that at some intermediate concentration values of the
extracellular AI the network is bistable. Indeed, it
simultaneously has two steady states with low, cor-
responding to the ‘off’ state, and high, representing
the ‘on’ state, concentrations of the intracellular AI.
In biological terms, this mathematical result can be
interpreted so that the given QSN layout may possess
bistable switchlike behavior at some biologically plau-
sible reaction parameters. If, however, we remove the
dimerization of the QSTR from the reaction scheme
in Figure 4(a) and instead assume that P is the tran-
scriptionally competent QSTR, we will obtain a very
different dependence of dAidt on Ai (see Figure 4(c)).
This modified QSN layout has a single steady state at
any Ae and with any combination of model parame-
ters. This implies that the variant of the QSN layout
without QSTR dimerization cannot be a ‘switch’ in
a strict sense but instead will always behave as a
‘rheostat’.
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FURTHER READING

Quorum sensing represents an example of bacterial cell–cell communication. A generally accessible and concise
introduction to this topic can be found in the enlightening and visually appealing review178 by Losick and Kaiser.
A systematic account of this field, including quorum sensing, is compiled in the comprehensive collection edited
by Dunny and Winans.12 Because communication is crucial for complex organization, bacterial multicellular
morphogenesis is another exciting topic related to quorum sensing.179–181 Those interested in application of
mathematical modeling to the analysis of QSN are referred to the clear and accessible paper by Dockery and
Keener.119 Further references on modeling and its role in understanding intracellular decision circuitry can be
found in the excellent reviews written by the pioneers of this field.114,115,118,182
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