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Systems analysis of a quorum sensing network: Design constraints
imposed by the functional requirements, network topology

and kinetic constants
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Abstract

Understanding the relationship between the structural organization of intracellular decision networks and the observable pheno-
types they control is one of the exigent problems of modern systems biology. Here we perform a systems analysis of a prototypic
quorum sensing network whose operation allows bacterial populations to activate certain patterns of gene expression cooperatively.
We apply structural perturbations to the model and analyze the resulting changes in the network behavior with the aim to identify
the contribution of individual network elements to the functional fitness of the whole network. Specifically, we demonstrate the
importance of the dimerization of the transcription factor and the presence of the auxiliary positive feedback loop on the switch-like
behavior of the network and the stability of its “on” and “off” states under the influence of molecular noise.
© 2005 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Complex behavior of biological systems is a
phenotypical manifestation of the operation of intra-
cellular circuitry composed of signal transduction and
gene expression networks. The promise of systems biol-
ogy to understand how molecular networks control the
observed behavior relies on the hope that the entire deci-
sion circuitry can be hierarchically decomposed into
functional modules of progressively lower complexity
(Hartwell et al., 1999). The first step along this path is
to identify the most fundamental control modules (Milo
et al., 2002) and fully understand their function. One
strategy to achieve this goal is to apply a multitude of
perturbations to the network components and observe
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the changes in system behavior (Ideker et al., 2001).
This task is not trivial because the function of a n
work is not just a linear combination of the functions
its parts. Additional complexity arises from the fact t
most of networks perform their function on a hierarch
systemic levels from the molecular to population-w
The situation is not uncommon when the mechanic
a certain network is well characterized on the molec
level, but its function on higher systemic levels is ba
understood.

Here we develop an in silico perturbation appro
that can be applied to model control networks to g
insight into the significance of their components for
functional fitness of whole networks. Specifically,
investigate a prototypic network that controls the q
rum sensing phenomenon. This network has eme
as a generalization of a number of individual con
networks found in a broad range of Gram-negative
terial species. Quorum sensing (QS) is a token nam
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the ability of bacterial populations to cooperatively acti-
vate specific gene expression programs in response to the
increase in local cell density (von Bodman et al., 2003;
Henke and Bassler, 2004; Fuqua and Greenberg, 2002;
Fuqua et al., 2001).

The cell–cell communication that is necessary to
coordinate the collective behavior is achieved through
the mechanism that can be considered a biochemical
analogy of radar. Each individual cell secretes a certain
amount of diffusible, low-molecular-weight substance
termed autoinducer, whose local concentration can be
perceived by other bacteria present in the surround-
ing environment. In the absence of other autoinducer-
producing cells and impenetrable boundaries, diffusion
rapidly disperses the newly synthesized molecules of
autoinducer and they are eventually lost in the envi-
ronment like the probing signal of radar. Once a cer-
tain threshold density of autoinducer-producing cells is
reached, the incoming autoinducer signal amplified by
the QS network turns on the expression of the phenotype-
specific genes and boosts the production of autoinducer.
The relationship between the structural organization of
such a network and its biological function is the focus of
the present work.

The acyl-homoserine lactone signaling system typical
to Gram-negative bacteria and considered in detail in
this paper is not the only known implementation of the
quorum sensing protocol. Thus Gram-positive bacteria
utilize secreted peptides to achieve the same density-
dependent effect (for review seeFuqua and Greenberg,
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“off” state with a stand-by level of autoinducer produc-
tion and less than one molecule of transcription factor
per cell. Above the threshold, the transcription factor is
expected to be found in detectable concentrations suffi-
cient to stably activate expression of all target operons.
Typically such behavior implies a bistable, hysteretic
form of the relationship between the transcription fac-
tor copy number and the extracellular concentration of
autoinducer.

Provided that the typical bacterial cell volume is in
the range 10−13 to 10−12 cm3, most of RNA and some
protein species, especially in the “off” state, are present
in the order of 10 and less copies per cell. The QS net-
work should thus be able to exert its control and exhibit
the switch-like behavior in the conditions of intensive
molecular noise. Specifically, this implies that the “off”
state should be robust to fluctuations in the copy num-
ber of the network components. Moreover, not only the
average level of the QS transcription factor but also its
fluctuations should be kept under tight control. If at a
very low extracellular concentration of autoinducer the
transcription factor copy number exhibited rare but large
deviations from zero, a bacterial population at any time
would have a certain percentage of cells in the “on” state.
This is likely to be detrimental for the individuals in the
“on” state and potentially for the entire population. For
example, if the QS-controlled phenotype is an expression
of toxins or other virulence factors, the “forerunners”
would give the host organism an advanced notification
of a pending attack and possibly trigger the immune
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002). Additional communication system that relies
secreted metabolite termed AI-2 was found unifor

n both types of bacteria (see e.g.,Henke and Bassle
004).

.1. Functional requirements

Quorum sensing is a system of choice for
tructure–function analysis because its functi
equirements are thought to be well understood.
ntracellular dynamics of the QS network can be re
ly linked to the observed bacterial population beha
oth experimentally and theoretically (McMillen et al.,
002; Basu et al., 2004; You et al., 2004). All known QS
etworks operate as an “on–off” gene expression sw
y controlling the level of a certain transcription fac
hose expression is suppressed in the “off” state a
trongly induced in the “on” state. A QS network the
ore is expected to possess a sharp switch-like beh
n response to variation of autoinducer in the envi

ent. Until a certain critical autoinducer concentra
s reached, the intracellular network must remain in
response.
Additional requirements stem from the populati

wide nature of the QS phenomenon. To perform
transition, the population needs to produce a supercr
concentration of autoinducer in a macroscopic volu
If the value of the critical concentration were too high
would imply a waste of the population resources, po
tial detection by the host, competitors, or predators
the inability to reach QS in the conditions unfavora
for the accumulation of autoinducer (e.g., in the p
ence of flow). The threshold population density tha
required to achieve the critical autoinducer concentra
has to be within the range natural for the environm
where the particular QS event takes place, e.g., in
light organ of a squid or in the risosphere of a plan
most cases, bacterial population density is constra
by the availability of nutrients, presence of competi
or the host response and the QS network has to co
with the restriction on the maximum density. For ex
ple, this implies that the production of autoinducer in
“off” state should be sufficient to accumulate the crit
concentration at a permissible cell density.
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Some of the discussed requirements are contradicting
each other and the fulfillment of their entirety is a non-
trivial task that requires evolutionary optimization. For
example, the necessity to produce an appreciable amount
of autoinducer in the “off” state is countered by the need
to maintain a low copy number of the transcription factor.
Given these restrictions, one may expect that the network
layouts selected by evolution are functionally optimized
and all network components are important for the func-
tional fitness. By perturbing these networks we can learn
how the affected components contribute to the observed
phenotype. A prototypic QS network layout has emerged
from a number of studies in various Gram-negative bac-
terial species (Fuqua et al., 2001). Here we analyze this
network paradigm by altering its layout in silico and esti-
mating the resulting changes in the functional fitness of
the network by means of computational modeling.

2. The model

2.1. The QS network topology

The first detailed molecular characterization of the
QS phenomenon appeared in the studies of density-
dependent regulation of bioluminescence in a squid sym-
biont Vibrio fischeri (Engebrecht and Silverman, 1984;
Engebrecht et al., 1983). They demonstrated that the
production of light is controlled by two regulatory pro-
teins LuxR and LuxI that act as the transcription factor
that activates expression of the light-producing enzyme
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form D. Both binding reactions are considered here as
reversible (Fuqua et al., 2001) although in some species
the formed complexes are exceptionally stable (see Sec-
tion 3.1for discussion). The formed transcription factor
(either P or D) directly activates transcription of the
operon containing synthase I and other operons cod-
ing for the phenotype-specific genes. Activation of the
transcription occurs through the specific reversible bind-
ing of the transcription factor to the response sequences
located in the immediate proximity of the target operon
promoters. This in turn causes recruitment of the RNA
polymerase and increases the frequency of the transcrip-
tion initiation (Fuqua et al., 2001). In many cases the
transcription factor also activates expression of the pro-
tein R creating additional positive feedback. Assembling
all of the described molecular interactions together with
the processes of transcription, translation and degrada-
tion of the components, we obtain a self-contained pro-
totypical network presented inFig. 1. Although exactly
this layout can hardly be attributed to any existing bac-
terial species, it can be found as a network motif in
almost all Gram-negative bacteria. Real networks typ-
ically demonstrate higher complexity which is achieved
through addition of supplementary positive and nega-
tive feedback loops (Zhu et al., 2000) as well as through
the modular design involving parallel and sequential
arrangement of individual QS modules (Wisniewski-
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luciferase and the autoinducer synthase, respect
More than 20 years later we know dozens of QS
work layouts in various Gram-negative bacteria tha
based on the homologues of the LuxR–LuxI cou
(Fuqua et al., 2001; von Bodman et al., 2003; Fuqua
Greenberg, 2002). These proteins play key roles a
in our model QS network, which is shown inFig. 1,
and are denoted simply as R and I. Synthase I
duces autoinducer out of readily available in the
metabolites, which are assumed to be present in e
and are denoted as a single substrate S for brevity
synthesized molecules of autoinducer A can freely
fuse through the cell wall equilibrating the intrace
lar and extracellular pools of autoinducer. Although
some bacterial systems this process has been sho
suspected to be facilitated by active transport (Fuqua
et al., 2001), generally it relies on passive permeab
of the cell wall (Fuqua et al., 2001; von Bodman et
2003; Fuqua and Greenberg, 2002). Binding of A to the
monomeric R protein results in the creation of a pro
P that is either immediately transcriptionally com
tent, or after the dimerization that results in a dim
rFig. 1. A prototypic quorum sensing network layout of Gram-nega
bacteria. Proteins are shown as ellipses and mRNA species as
gles. R and I are quorum sensing transcription activator and autoin
synthase of LuxR–LuxI type.Ai andAe denote internal and extern
concentrations of autoinducer, respectively. P and D represent the
plex of R and autoinducer and the dimer of this complex. S denote
strates of the autoinducer synthase. Empty circle arrowheads rep
enzymatic catalysis and empty triangles the transcription. Reve
reactions of formation of P and D are denoted as empty boxes.
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Dye and Downie, 2002; Ledgham et al., 2003). In this
paper we consider a QS module consisting of two pos-
itive feedback loops, the obligatory QS loop R–P(D)–I
and the optional amplification loop R–P(D)–R. Specifi-
cally, we study the contribution of the transcription factor
dimerization and the influence of the second feedback
loop.

2.2. Modeling approach

We use a standard chemical kinetic approach based
on the mass-action rate law to describe temporal dynam-
ics of the intracellular QS network while the extracel-
lular concentration of autoinducer,Ae, is varied as a
free parameter. Complex processes of transcription and
translation are considered in a simplified cumulative
form:

DNA + TF � DNA–TF → DNA–TF + mRNA, (1)

mRNA → mRNA + Protein, (2)

where TF is either P or D. This approach leads to
the systems of ordinary differential equations that can
be studied analytically and simulated numerically. To
investigate the influence of molecular noise on net-
work components, we go beyond standard ODE for-
malism and simulate the network kinetic equations
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3. Results and discussion

3.1. Stability of the transcription factor

Formation of the complex between autoinducer and
the monomeric R protein provides an example of a sin-
gle molecular interaction so crucial for the function
of the whole network that the value of the constant
describing its kinetics can invalidate the entire layout.
In the recent modeling literature it has been implicitly
assumed that complex P is unstable and its concentra-
tion is in quasi-equilibrium with concentrations of A
and R at all times (James et al., 2000; Dockery and
Keener, 2001). Slow formation of P and its fast disso-
ciation guarantee that the level of P is negligible when
the abundance of R and A are low. Recent results of
Urbanowski et al. (2004)on the interaction betweenV.
fischeri LuxR and its cognate autoinducer appear to back
up this hypothesis. These authors found the formation of
the complex easily reversible and measured the dissocia-
tion constant to be approximately 100 nM. Low stability
of the complex between R and A however is not the
case for all known QS networks of LuxR–LuxI type.
A striking counter example is provided by the interac-
tion of Agrobacterium tumefaciens TraR protein and its
autoinducer AAI. Their binding is thought to occur only
during TraR translation when the newly synthesized pro-
tein chain tightly wraps around the autoinducer molecule
(Zhu and Winans, 1999; Zhu and Winans, 2001). Struc-
tural studies (Zhang et al., 2002) confirmed that this
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ith the exact Gillespie algorithm (Gillespie, 1977) as
mplemented in the public-domain whole-cell mod
ng software package Cellware (Dhar et al., 2004a,b).
inetic parameters used in our models were estim
n the basis of the published data. Assuming th
eneric bacterial cell can be approximated by a c
er with radius 0.3�m and length 2�m, we calcu

ated the bacterial cell volumeVb = 5.65× 10−13 cm3

nd cell surface areaSb = 4.34× 10−8 cm2. Given tha
he permeability of the cell wall to autoinducer
n the order ofP ≈ (1–5)× 10−6 cm/s (Kaplan and
reenberg, 1985; Rubinow, 2002), the estimate for th
utoinducer diffusivity isk14 = PSb/Vb = 0.08–0.4 s−1.
sing the value ofVb, we converted all concentratio

rom moles per liter (M) to molecules per cell an
djusted the appropriate kinetic constants (1 mole
er cell corresponds to approximately 3 nM). These m
urement units facilitate the interpretation of results
an be used interchangeably between the determi
nd stochastic modeling approaches. All determin
imulations were performed using Matlab (The Ma
orks Inc., Natick, MA).
complex can be considered practically irreversible a
AAI molecule is buried deeply inside the protein an
not accessible to the solvent. For the network topo
shown inFig. 1, a strong bias of the binding equilibriu
towards P results in the accumulation of the trans
tion factor that continues until the network reaches
“on” state. This process does not require the influx o
extracellular autoinducer and the “on” state is reach
any value ofAe. Thus if complex P is very stable, t
network layout considered in this paper fails to prov
the required behavior of an “on–off” switch. Intere
ingly, in theA. tumefaciens QS network this problem
resolved through the introduction of an additional n
ative feedback loop that assures the near-zero lev
the transcription factor in the “off” state (Hwang et al.
1999; Swiderska et al., 2001).

The stability of the complex P can be defined m
precisely on the basis of the following inequality. If
half-life of the complex P due to the process of diss
ation is much shorter than its half-life due to the pro
degradationtdis

1/2 � t
deg
1/2, the complex can be conside

unstable and the assumption of its quasi-equilibr
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with A and R valid. If, on the contrary,tdeg
1/2 � tdis

1/2, P
is stable during its lifetime and our network layout does
not describe a functional QS network. Similar qualitative
arguments apply if complex P undergoes dimerization
but the quantitative analysis becomes much more com-
plex. Here we restrict our consideration to the case when
both binding equilibrium constants favor the dissociation
of the complexes.

3.2. The minimal QS network

We first asked if a functional QS network that satis-
fies the formulated requirements can be designed solely
on the basis of the obligatory QS loop R–P(D)–I with-
out the supporting the amplification loop R–P(D)–R.
Since such a layout has the minimal possible complex-
ity, in the following we refer to this network as minimal.
To perform qualitative analysis of the network dynam-
ics, we reduce the dimensionality of the minimal QS
network applying standard quasi-steady-state approxi-
mation. Variables describing vacant transcription factor
binding sites and DNA-TF complexes (see Eq.(1)) can
be readily eliminated using effective Michaelis–Menten
approximation for all transcription events. We further
assume that both in the “off” and “on” states the
steady-state approximation can be applied to all mRNA
species and the autoinducer synthase I. Keeping D in
the network layout we then obtain the following kinetic
equations:

dP

dt
= k8RAi − k−8P − 2k13P

2 + 2k−13D, (5)

dD

dt
= k13P

2 + k−13D. (6)

The form of Eqs.(5) and (6)incorporates the earlier
stated conjecture that both P and D are unstable com-
plexes in the sense thattdis

1/2 � t
deg
1/2. The degradation

terms are therefore omitted from the equations as negligi-
ble in comparison with the dissociation terms. Applying
steady-state approximation to P and D and expressing
R from Eq.(3) we finally reduce the entire system to a
single nonlinear equation for the concentration of autoin-
ducer:

dAi

dt
= k11k9

k5k10

(
k3A

2
i

K4/K13k
2
8R

2
0 + A2

i

+ k12

)

+ k14(Ae − Ai ), (7)

where R0 = k1k6/k2k7 is the stationary autoinducer-
independent level of R. As shown inFig. 2A, Eq.(7) can
potentially describe an “on–off” switch whose dynamics
is controlled by the extracellular concentration of autoin-
ducerAe. Interestingly, we find that the dimerization of
the transcription factor is essential for this network prop-
erty. This can be readily shown if the dimerization step
is removed from the reaction mechanism and the kinetic
equations are modified accordingly. Following the same
steps, instead of(7) we find the equation:( )

net-
tor

Depen utoinducer
e valu M; (c)
d circl tate. (B)
iagram c model
concen
dR

dt
= k1k6

k2
− k7R, (3)

dAi

dt
= k11k9

k5k10

(
k3D

K4 + D
+ k12

)
− k8RAi + k−8P + k14(Ae − Ai ), (4)

Fig. 2. Dynamics of the minimal quorum sensing network. (A)
according to Eq.(7) with parameters given inTable 1plotted at thre
24 nM. Positions of stable stationary states are marked by fille
Dependence of the D concentration onAe, deterministic bifurcation d
by filled circles (observation time 6× 106 s, sampled every 100 s).Ae
dAi

dt
= k11k9

k5k10

k3Ai

K4/K8R0 + Ai
+ k12

+ k14(Ae − Ai ), (8)

that has a single stationary state at all values ofAe and
does not possess the switch-like behavior. Thus the
work layout with dimerization of the transcription fac

dence of the autoinducer production on the concentration of a
es of extracellular autoinducer concentration: (a) 0 nM; (b) 12 n
es for the “off” network state and by filled boxes for the “on” s

is shown by lines and time-averaged value of D in the stochasti
tration is shown as molecules per cell.
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Table 1
Kinetic constants used in the model of the minimal QS network

Constant Legend Value References

k1 Transcription of R 1.5× 10−2 m s−1 Dundr et al. (2002), Kierzek et al. (2001)andIyer and Struhl (1996)
k2 Degradation of R mRNA 6.0× 10−3 s−1 Hambraeus et al. (2003)
k3 Transcription of I, maximal

velocity
1.4× 10−2 m s−1 Dundr et al. (2002), Kierzek et al. (2001)andIyer and Struhl (1996)

k4 Transcription of I, binding of
D, “on” rate

10−2 m−1 s−1 Kugel and Goodrich (2000), Narayan et al. (1994)andZhu and Winans (1999)

k−4 Transcription of I, binding of
D, “off” rate

4.0× 10−2 s−1 Kugel and Goodrich (2000), Narayan et al. (1994)andZhu and Winans (1999)

k5 Degradation of I mRNA 6.0× 10−3 s−1 Hambraeus et al. (2003)
k6 Translation of R mRNA 1.6× 10−2 s−1 Kierzek et al. (2001), Iyer and Struhl (1996)andWatson et al. (2003)
k7 Degradation of R 10−4 s−1 Pratt et al. (2002)
k8 Binding between R and A 10−5 m−1 s−1 Estimated
k−8 Dissociation of P 3.33× 10−3 s−1 Estimated
k9 Translation of I mRNA 1.6× 10−2 s−1 Kierzek et al. (2001), Iyer and Struhl (1996)andWatson et al. (2003)
k10 Degradation of I 10−4 s−1 Pratt et al. (2002)
k11 Enzymatic production of A 6.0× 10−2 s−1 Parsek et al. (1999)andSchaefer et al. (1996)
k12 Constitutive transcription of I 4.0× 10−4 m s−1 Dundr et al. (2002), Kierzek et al. (2001)andIyer and Struhl (1996)
k13 Dimerization of P 10−5 m−1 s−1 Estimated
k−13 Dissociation of D 10−2 s−1 Estimated
k14 Autoinducer diffusivity 0.23 s−1 Kaplan and Greenberg (1985)andRubinow (2002)

All values are adjusted to concentrations expressed as molecules per cell (abbreviated asm). Derived constants areK4 = k−4/k4, K8 = k8/k−8 and
K13 = k13/k−13.

is indeed the minimal layout that satisfies the basic QS
requirement.

We imitated the adaptive evolution of the intracellular
QS network by varying its parameters within a biologi-
cally realistic range while trying to achieve simultaneous
fulfillment of the following requirements:

• The network should experience the transition to
the “on” state at a low extracellular concentration
of autoinducer in the range corresponding to 5–10
molecules per cell.

• Concentration of D atAe = 0 should not exceed 0.05
molecules per cell.

• The concentration of D should jump during the tran-
sition by at least one order of magnitude.

The results of this naı̈ve empirical optimization are
reflected inTable 1andFig. 2. We observe that to achieve
the stated objectives, the stability of complexes P and D
indeed has to be fairly low with the dissociation constants
1 and 3�M, respectively. Generally, the behavior of the
network is found to be highly sensitive to the variation of
kinetic parameters and the bistability observed in a very
narrow parameter region.

Unexpectedly, we find that the stochastic behavior of
the full model deviates from the deterministic dynam-
ics of the ODEs.Fig. 2B presents an averaged over
very long observation period (6× 106 s) concentration

of D versusAe plotted together with the deterministic
bifurcation diagram. It shows that the stochastic sys-
tem fails to display a sharp switch-like transition and
instead exhibits incremental growth of D concentration
that lags behind the deterministic prediction. The dif-
ference between stochastic and deterministic values of
other network variables is on the order of the numeric
precision atAe = 0 and slightly increases withAeup to the
point of transition. Detailed analysis of the D time series
shows that the associated probability density function
(PDF) peaks at 0 and then decays exponentially with
D for all Ae values in the shown range. The observed
growth in the average D value is achieved solely through
the accumulation of the progressively increasing fluc-
tuations. This result indicates that the minimal network
layout may not perform adequately in the conditions of
molecular noise and therefore does not comply with all
of the requirements for the functional QS network.

3.3. The basal QS network

Introduction of the second positive feedback loop puts
concentration levels of both R and A under the control
of the transcription factor. We first examine the simplest
QS network layout that includes both feedback loops,
namely when the dimerization of the transcription fac-
tor dos not occur. Following the same procedure as was
used for the reduction of the minimal network, after the
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Fig. 3. Behavior of the basal quorum sensing network. (A) The nullclines of the reduced basal model at three values of extracellular autoinducer
concentration: (a) 0 nM; (b) 30 nM; (c) 50 nM. R nullcline is shown by solid line. Other notations are the same as inFig. 2. (B) Dependence of the
P concentration onAe, deterministic bifurcation diagram is shown by lines and time-averaged value of P in the stochastic model by filled circles
(observation time 6× 106 s, sampled every 100 s).

necessary algebra, we arrive at the two equations for R
and A:

dAi

dt
= k11k9

k5k10

(
k3RAi

K4/K8 + RAi
+ k12

)
+ k14(Ae − Ai ),

(9)

dR

dt
= k6

k2

(
k15RAi

K16/K8 + RAi
+ k1

)
− k7R. (10)

Systems of equations analogues to the systems(9) and
(10)first appeared in the work on the QS phenomenon in
V. fischeri (James et al., 2000) and later in the indepen-
dent study on the QS network inPseudomonas aerugi-
nosa (Dockery and Keener, 2001). Owing to the apparent
ubiquity of this network layout, in following we refer to it

as the basal.Fig. 3A shows the nullclines of the systems
(9) and (10)with the parameter values selected to satisfy
the QS network requirements. The geometry of the null-
clines is such that the levels of both R and A have to be
kept low in the “on” state to ensure that the “off” state is
the only stationary point at lowAe. We achieve this by
assuming weakness of the I promoter, low transcription
rate of R and its fast degradation rate (seeTable 2). Addi-
tional constraint, common to all models considered here,
is that the stability of the “off” state defined by the con-
stitutive transcription levels of I and R comes at a price
of high value for the critical extracellular autoinducer
concentration.

Stochastic simulations of the network dynamics
demonstrate that fluctuations in molecular copy number

Table 2
Kinetic constants used in the model of the basal QS network

Constant Legend Value References

k1 Constitutive transcription of R 1.5× 10−4 m s−1 Dundr et al. (2002), Kierzek et al. (2001)andIyer and Struhl (1996)
k3 Transcription of I, maximal

velocity
4.16× 10−3 m s−1 Dundr et al. (2002), Kierzek et al. (2001)andIyer and Struhl (1996)

k4 Transcription of I, binding of
P, “on” rate

10−3 m−1 s−1 Kugel and Goodrich (2000), Narayan et al. (1994)andZhu and Winans (1999)

k−4 Transcription of I, binding of
P, “off” rate

1.32× 10−2 s−1 Kugel and Goodrich (2000), Narayan et al. (1994)andZhu and Winans (1999)

k6 Translation of R mRNA 1.28× 10−2 s−1 Kierzek et al. (2001), Iyer and Struhl (1996)andWatson et al. (2003)
k7 Degradation of R 10−3 s−1 Pratt et al. (2002)
k8 Binding between R and A 1.4× 10−4 m−1 s−1 Estimated
k−8 Dissociation of P 10−2 s−1 Estimated
k Enzymatic production of A 3.3× 10−1 s−1 Parsek et al. (1999)andSchaefer et al. (1996)

undr et
plan a

undr et

gel an )

gel an )

ts areK4
11

k12 Constitutive transcription of I 1.17× 10−4 m s−1 D
k14 Autoinducer diffusivity 0.16 s−1 Ka
k15 Transcription of R, maximal

velocity
4.0× 10−3 m s−1 D

k16 Transcription of R, binding of
P, “on” rate

10−2 m−1 s−1 Ku

k−16 Transcription of R, binding of
P, “off” rate

4.5× 10−2 s−1 Ku

Not displayed constants are the same as inTable 1. Derived constan
al. (2002), Kierzek et al. (2001)andIyer and Struhl (1996)
nd Greenberg (1985)andRubinow (2002)
al. (2002), Kierzek et al. (2001)andIyer and Struhl (1996)

d Goodrich (2000), Narayan et al. (1994)andZhu and Winans (1999

d Goodrich (2000), Narayan et al. (1994)andZhu and Winans (1999

= k−4/k4, K8 = k8/k−8 andK16 = k−16/k16.
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Fig. 4. Dynamics of the modified basal model. (A) The nullclines of the reduced model at three values ofAe: (a) 0 nM; (b) 15 nM; (c) 30 nM.
R nullcline is shown in thick solid line. (B) Stationary concentration of D vs.Ae. Stochastic data (filled circles) are plotted together with the
deterministic bifurcation diagram.

destroy the bistability of the deterministic model. At the
low values ofAe, P exhibits rare but prominent departures
from zero. AsAe increases, these excursions quickly
grow in amplitude and frequency while the mode of the D
PDF remains at 0 for all values ofAe in the shown range.
Above the critical autoinducer concentration predicted
by the ODEs, it is possible to observe 20–40 copies of P
per cell while the average concentration remains much
lower than the value that follows from the determinis-
tic model. Thus clear separation between the “off” and
“on” states is not preserved in the conditions of molec-
ular noise.

3.4. The basal QS network with dimerization

Finally we modify the basal network layout to include
dimerization of the transcription factor. Assuming that
the steady-state approximation for concentrations of P
and D holds under the earlier specified conditions, the
equations for A and R become:

dAi

dt
= k11k9

k5k10

(
k3R

2A2
i

K4/K13K
2
8 + R2A2

i

+ k12

)

+ k14(Ae − Ai ), (11)

Table 3
Kinetic constants used in the model of the modified basal QS network

Constant Legend Value References

k1 Constitutive transcription of R 3.0× 10−4 m s−1 Dundr et al. (2002), Kierzek et al. (2001)andIyer and Struhl (1996)
k3 Transcription of I, maximal

velocity
2.0× 10−3 m s−1 Dundr et al. (2002), Kierzek et al. (2001)andIyer and Struhl (1996)

k4 Transcription of I, binding of
D, “on” rate

10−3 m−1 s−1 Kugel and Goodrich (2000), Narayan et al. (1994)andZhu and Winans (1999)

k−4 Transcription of I, binding of
D, “off” rate

3.0× 10−2 s−1 Kugel and Goodrich (2000), Narayan et al. (1994)andZhu and Winans (1999)

k7 Degradation of R 2.0× 10−4 s−1 Pratt et al. (2002)
k8 Binding between R and A 10−4 m−1 s−1 Estimated
k−8 Dissociation of P 3.0× 10−3 s−1 Estimated
k10 Degradation of I 5.0× 10−5 s−1 Pratt et al. (2002)
k11 Enzymatic production of A 0.45 s−1 Parsek et al. (1999)andSchaefer et al. (1996)
k12 Constitutive transcription of I 1.5× 10−4 m s−1 Dundr et al. (2002), Kierzek et al. (2001)andIyer and Struhl (1996)
k13 Dimerization of P 3.0× 10−5 m−1 s−1 Estimated
k plan a
k ndr et

k gel an )

k gel an )

N reK4 = k−
14 Autoinducer diffusivity 0.4 s−1 Ka

15 Transcription of R, maximal
velocity

4.8× 10−3 m s−1 Du

16 Transcription of R, binding of
D, “on” rate

10−2 m−1 s−1 Ku

−16 Transcription of R, binding of
D, “off” rate

10−2 s−1 Ku

ot shown constants are the same as inTable 1. Derived constants a
nd Greenberg (1985)andRubinow (2002)
al. (2002), Kierzek et al. (2001)andIyer and Struhl (1996)

d Goodrich (2000), Narayan et al. (1994)andZhu and Winans (1999

d Goodrich (2000), Narayan et al. (1994)andZhu and Winans (1999

4/k4, K8 = k8/k−8, K13 = k13/k−13 andK16 = k−16/k16.
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dR

dt
= k6

k2

(
k15R

2A2
i

K16/K13K
2
8 + R2A2

i

+ k1

)
− k7R. (12)

The increase in the nonlinearity of the system is accom-
panied by the drastic change in the shape of the nullclines
presented inFig. 4A. Demanding that the network should
not possess the “on” state atAe = 0 would require fur-
ther reduction in the strength of both R and I promoters.
Instead here we consider the case when the network is
formally bistable already in the absence of extracellular
autoinducer. To reduce the risk of spontaneous transition
to the “on” state in the conditions of molecular noise,
we optimize the network parameters (seeTable 3) for
stability of the “off” state atAe = 0. The resulting model
demonstrates bistable behavior also in the stochastic sim-
ulations (seeFig. 4B). Introduction of the dimerization
step effectively abolishes large sporadic excursions away
from the “off” state typical to the basal model. In accor-
dance with the prediction of the deterministic system,
the “off” state ceases to exist beyond the critical value
of Ae. Interestingly, we find a significant difference in
the relative stability of the “off” and “on” states depend-
ing on the value ofAe. At Ae = 0, a simulation trajectory
started in the “off” state remains their indefinitely long
(at least for≥107 s or 115 days used as an upper limit
in our simulations). On the contrary, a simulation with
initial conditions corresponding to the “on” state very
quickly reaches the “off” state. AsAe grows, the rela-
tive stability changes in favor of the “on” state. Thus for

“on”
llion
may
the
re it
nsi-
n,
the

truc-
ing
the
out

opti-
arch
g that
ally
on-

der-

standing of the quorum sensing phenomenon. Although
our analysis is not exhaustive, it helps to understand
the importance of certain common components of the
control circuitry. Thus, dimerization of the transcription
factor is found to be important both with and without the
additional feedback loop. Dimerization reduces the noise
of the “off” state and improves its stability. Both dimer-
ization and the R self-amplification loop are necessary
to provide significant difference (two to three orders of
magnitude) between the levels of the transcription factor
in the “off” and “on” states. This separation appears to
be necessary for preservation of the switch-like behav-
ior when fluctuations in the molecular copy numbers are
included into the consideration.

All discussed network layouts consist solely of posi-
tive feedback loops. The very existence of the “off” state
in such systems depends on the weakness of binding
between autoinducer and the monomeric transcription
factor as well as between the monomers if dimerization
is involved. If these conditions on the kinetic constants
are not observed, the quorum sensing effect cannot be
achieved with the layout considered here. Secondly, for
the stability of the “off” state it is important that the
expression of both R and I is only weakly induced by
the transcription factor. This implies that the network
requires a long period of time to switch into the “on”
state, since this transition is based on the accumula-
tion of R and I. Furthermore, the stabilization of the
“off” state comes together with an inevitable increase in
the critical concentration of autoinducer. Taken together,

ased
uc-
ore
will

eed-
f

s-
was
and

004.
ating

ao,
are

321.
Ae≥ 5, the system spontaneously escapes into the
state during our standard observation time of 6 mi
seconds. This behavior, while formally undesirable,
not present a biologically significant problem since
concentration range of extracellular autoinducer whe
occurs would normally be reached only during the tra
tion to QS. More importantly for the biological functio
the network appears to be stable in the “off” state in
neighborhood ofAe = 0.

4. Conclusions

Here we considered the behavior of several s
tural variations of a prototypical QS network differ
in the presence of additional amplification loop and
dimerization of the transcription factor. For each lay
we attempted to identify a set of parameters that
mizes the functional fitness of the network. The se
in the parameter space is constrained by requestin
the kinetic parameters must remain in the biologic
realistic range and the resulting network should dem
strate the behavior compatible with our present un
these observations highlight that a network design b
solely on positive feedback is not efficient for constr
tion of “on–off” gene expression switches. We theref
predict that the future research in quorum sensing
emphasize the importance of additional negative f
back loops, like the one found in the QS network oA.
tumefaciens.
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