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Unfolding of Microarray Data
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ABSTRACT

The use of DNA microarrays for the analysis of complex biological samples is becoming a
mainstream part of biomedical research. One of the most commonly used methods com-
pares the relative abundance of mRNA in two different samples by probing a single DNA
microarray simultaneously. The simplicity of this concept sometimes masks the complex-
ity of capturing and processing microarray data. On the basis of the analysis of many of
our microarray experiments, we identi� ed the major causes of distortion of the microarray
data and the sources of noise. In this study, we provide a systematic statistical approach
for extraction of true expression ratios from raw microarray data, which we describe as
an unfolding process. The results of this analysis are presented in the form of a model
describing the relationship between the measured � uorescent intensities and the concentra-
tions of mRNA transcripts. We developed and tested several algorithms for inference of
the model parameters for the microarray data. Special emphasis is given to the statistical
robustness of these algorithms, in particular resistance to outliers. We also provide methods
for measurement of noise and reproducibility of the microarray experiments.
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1. INTRODUCTION

DNA microarrays are used to explore gene expression on a genome-wide scale (Brown and
Botstein, 1999; Duggan et al., 1999). By quantifying the relative abundance of thousands of mRNA

transcripts simultaneously, researchers can discover new functional relationships among genes (Wen et al.,
1998) and observe the response of whole genomes to various experimental perturbations (Iyer et al., 1999;
Spellman et al., 1998). Microarrays have also found extensive application in medicine and pharmacology
(Debouck and Goodfellow, 1999). For example, microarrays can be used to identify genes whose pattern
of expression distinguishes various types of cancer (Alizadeh et al., 2000; Golub et al., 1999).

There are two major types of DNA microarray technologies that can be broadly termed as one-channel
and two-channel. The one-channel measures the absolute concentrations of mRNA transcripts. The two-
channel estimates the relative abundance between a sample and a control specimen. In this second method,
which is the focus of this paper, � uorescently-labeled cDNA is prepared from the two biological sources
that are to be compared. The two cDNA populations are labeled with different � uorescent dyes, pooled, and
simultaneously cohybridized to thousands of different DNA molecules, which are arrayed on a modi� ed
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glass slide. The � uorescence from the glass slide is measured at the two wavelengths and the individual
microarray spots are identi� ed using image-processing algorithms. The background � uorescent intensity
can then be subtracted from the intensity of each spot. Finally, the two data sets, one for each � uor, are
scaled to each other and the normalized intensities at each spot are compared to generate a list of genes
that are differentially expressed.

The success of DNA microarray analysis is critically dependent on the quality and precision of the data,
but the miniaturization and massive parallelization involved pose challenging physical and mathematical
problems for data acquisition and subsequent analysis (Chen et al., 1997; Claverie, 1999; Schuchhardt et al.,
2000). Because gene expression levels in cells can vary by several orders of magnitude, it is necessary
to measure signals over a wide dynamic range. In microarray experiments, it is common to observe both
saturated signals and signals that are lost in the background noise. For low intensity spots, distinguishing
the targets from the background poses signi� cant challenges and inevitably results in large measurement
error. The integration and scaling of the two data sets are also dif� cult for two reasons. First, the two
commonly used � ors, Cy3 and Cy5, have different physical properties. They are differentially incorporated
into the cDNA, and the quantum � uorescent yields are different. Second, the microarray spots are widely
separated with respect to their individual size and thus spots may be hybridized, washed, and scanned in
different conditions depending on their location on the array.

There are various algorithms that accomplish the target separation, background correction, and normal-
ization steps. For the DNA microarray applications, these methods are commonly disseminated by means
of web sites or through private communication. A number of recently developed software packages also
provide numerous options for image quanti� cation, background correction, and normalization. The dif� -
culty in selecting the optimal suite of programs for data reduction stems from the fact that the underlying
algorithms are rarely known and their relative performance is dif� cult to assess. In addition, many of the
methods have not been suf� ciently substantiated by statistical analysis. In particular, the statistical robust-
ness of background correction and normalization methods has not received adequate attention since the
pioneering paper by Chen et al. (1997).

In this paper we provide a systematic statistical approach to dealing with raw DNA microarray data. We
introduce a model that describes a relationship between the measured � uorescent signals and the mRNA
concentrations. This model stems from the analysis of many of our microarray experiments, including
several that were designed speci� cally to assess contribution of factors that complicate microarray analysis.
We show that one can extract true expression ratios from the raw microarray data by statistically estimating
the parameters of the model. In broad terms, our technique is analogous to the method known in statistical
data analysis as unfolding (Cowan, 1998), and our work presents a uni� ed framework for the unfolding of
microarray data.

2. MODEL FOR MEASURED EXPRESSION RATIOS

The goal of this section is to introduce a model that describes the relationship between the intensities
of � uorescent signals and the concentrations of mRNA transcripts. To achieve this, we must account
for the sequence of chemical and physical processes that take place between the RNA isolation and the
quanti� cation of the microarray image. In our notations, let the RNA messages for the i-th gene be present
at concentrations cs

i and cc
i in the sample and control specimens, respectively. For the sake of clarity, we

temporarily assume that the sample is labeled with Cy3 (“green”) and the control with Cy5 (“red”). The
other labeling order is possible and often necessary to determine the systematic effects introduced by the
type of � or (see Section 3.3). Therefore, it is important to distinguish sample and control probes from
“red” and “green” channels.

If the reverse transcriptase incorporates on average °i molecules of dye into the cDNA copy of the
i-th transcript, then after labeling the i-th gene is represented by ° G

i cs
i optically detectable molecules in

the sample and ° R
i cc

i in the control. In practice, the ef� ciency with which the dye is incorporated ° G
i ,

° R
i depends on the conditions of the reverse transcription (RT) reaction, the ternary structure of mRNA,

and the gene nucleotide sequence. The quantity ° G
i is not generally equal to ° R

i due to the difference in
molecular properties of the dyes, and the preferential incorporation of the dyes into speci� c cDNAs can
be reproducibly shown in experiment.
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After the hybridization of the labeled cDNA to the DNA on the microarray surface, the resulting
� uorescence is quanti� ed using � uorescence microscopy. The intensity IG

i .r / of the green � uorescent
signal from the i-th gene spotted at location r on the array is proportional to ° G

i cs
i with a coef� cient AG.

The scaling factors AG, AR incorporate the quantum yield of dyes (i.e., ef� ciency of emission) and the
sensitivity of the scanner. Since the excitation and detection of � uorescence are performed separately for
red and green channels, the � uorescent properties of dyes are different, AR and AG are not identical. In fact,
they can vary widely depending on the scanner parameters (e.g., laser emission power and photomultiplier
voltage).

In some experimental layouts, AR and AG depend on r . This dependence can be explained in part by
the spatial microheterogeneity of the hybridization conditions and also the warped shape of the glass slide.
The spatial heterogeneity of AR and AG may also arise as a consequence of the optical design of the
scanner if it is based on confocal microscopy. The typical focal depth of a confocal scanner is 25 ¹m.
Given the dimensions (25£75 mm) of a typical microarray glass slide, even in� nitesimally small angles of
10¡3 in the position of the slide during scanning could result in the gradual loss of focus as the scanning
beam sweeps across the array. This imperfection manifests itself in A.r / gradients observed in top–bottom
and left–right directions on the array (see Section 3.2 for discussion).

The description of the microarray signal intensities is complete when stochastic terms » R
i .r /, » G

i .r /

representing all noisy contributions to Ii.r / are added. They take into account the cumulative effects of
chemical, optical, and computational factors that are introduced by the microarray technology. One of the
major challenges in the analysis of the microarray data stems from the fact that assessing and controlling the
relative contributions of the many sources of noise is dif� cult. Chemical factors, such as those introduced
during RNA preparation, labeling, hybridization, and washing, contribute to the » terms in two ways. Most
of the variability derives from incomplete hybridization or nonspeci� c binding to the array. The nonspeci� c
binding appears to be more of a problem for genes with a higher content of low-complexity sequence
motifs (hence subscript “i” in the » R

i .r /, »G
i .r / terms). The issues and complexities of correction for the

background signal, whose nature is primarily de� ned by the chemical factors, require special attention and
are considered in a greater detail in Section 3.1. Optical noise derives from factors intrinsic to � uorescence
microscopy (Inoue and Spring, 1997). For example, the background current from the photomultiplier tube
(PMT), the “dark current,” complicates the analysis of low-intensity spots. Computational variability arises
from errors introduced by the quanti� cation algorithms. For example, distinguishing the pixels in a target
from those in the background is a challenging image recognition problem since the microarray spots often
have low intensity and imperfect morphology.

Finally, assembling all introduced terms as shown in Fig. 1, we can present the observed green/red signal
ratio, Ti.r /, as

Ti.r / D
I G

i .r /

IR
i .r /

D
AG.r /° G

i cs
i C »G

i .r /

AR.r /° R
i cc

i C » R
i .r /

: (1)

This equation demonstrates that the observed value Ti.r / can be a fairly distorted representation of the
actual ratio of sample and control mRNA concentration T a

i D cs
i =cc

i , which is the � nal goal of the
microarray experiment.

3. THE MAIN STEPS OF THE UNFOLDING

The model introduced in the previous section provides a theoretical framework for the unfolding of
microarray data. Our model explicitly takes into account the most important factors that are thought to
distort the true expression ratios T a

i . For the practical analysis of microarray data, it is important to
distinguish distorting factors that can be inferred from a single microarray from those factors that require
multiple repetitions of the microarray experiment. The � rst category is mainly constituted by factors that
are independent of the gene and vary continuously with location on the array (e.g., scaling factors AG;R.r /,
whose dependence on r is de� ned by conditions of hybridization and distance to the scanner lens). The
second category consists of factors that vary markedly with both gene and location, such as nonspeci� c
binding and quanti� cation errors.
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FIG. 1. Diagram illustrating the derivation of the model (1) for the measured ratio of � uorescent intensities.

Before going into the detailed discussion of individual steps, we give an overview of the entire unfolding
procedure and stipulate the limits of the unfolding set forth by the noise factors. From the form of the
model (1), it follows that one should remove the additive terms »

R;G
i .r / as the � rst step towards extracting

T a
i from the experimental value Ti.r /. However, it is generally impossible to � nd exact estimates for the

»R
i .r /, »G

i .r / terms for each spot due to the stochastic nature of factors contributing to the noise terms.

A closer look at the raw microarray data shows that the »
R;G
i .r / terms possess a signi� cant systematic

component from the background � uorescence. For example, in Fig. 2A, we show that additive background
terms can profoundly affect the measured ratios. As the signal intensity diminishes, one observes deviation
of the expression data from the straight line, which re� ects the growing in� uence of the »G

i .r / terms.
At low intensities, the numerator of (1) is dominated by »G

i .r /, whose average value saturates while the
denominator diminishes.

We can calculate an estimate for the systematic components of the background signal, e.g., the most
probable values per channel, BR.r /, BG.r /, from the raw data. The “truly random” zero-centered noise
can be obtained by subtracting the systematic components BR.r /, BG.r / from the terms »R.r /, »G.r /.

FIG. 2. Unfolding of the microarray data. (A) Generic raw data, � tted to the data equation IG D a C bI R , is shown
by the solid line. (B) Same data after correction for the background and normalization.
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This residual noise contributes to the scatter of the expression points but does not lead to their systematic
deviation from a straight line. We now can rewrite model (1) in the form

Ti.r / D
AG.r /° G

i cs
i .1 C "G

i /

AR.r /° R
i cc

i .1 C "R
i /

;

where the noise terms are moved inside the product. Here we assume that the statistical properties of
the residual noise do not depend on location on the microarray. Since "G

i , "R
i are purely stochastic, their

contribution cannot be � ltered out. Therefore, as the result of the unfolding of a single microarray, we � nd
the effective expression ratios T e

i , which are equal to Qcs
i = Qcc

i , Qci D ci.1 D "i/. By simplifying the previous
equation further, we � nally get

Ti.r / D
AG.r /° G

i

AR.r /° R
i

¢ T e
i :

After background correction, the entire set of expression data is stretched on the plane (IG, IR ) along a
certain line which is parallel to the main diagonal and offset by the ratio of scale factors AG.r / and AR.r /.
We can remove systematic distortion of expression ratios due to the scale factors AG.r /, AR.r / and center
the data points around the line IR

0 D IG
0 (Fig. 2B) by applying one of the normalization methods described

below.
The last step of the unfolding is the correction for the differential dye incorporation represented by the

° G
i , ° R

i terms. Since incorporation coef� cients do not depend on the location and vary widely from gene
to gene, they cannot be inferred from a a single microarray experiment. A special experimental procedure
involving the two possible variants of labeling and known as “dye switch” or “dye � ip” is required to
provide the data necessary to estimate the incorporation coef� cients.

Finally, the unfolding transformation, which allows us to calculate effective expression ratios T e
i as the

best approximation for the actual ratio T a
i , can be symbolically written as

T e
i D

° R
i AR.r /.IG

i .r / ¡ BG.r //

° G
i AG.r /.IR

i .r / ¡ BR.r //
: (2)

In practice, the transformation (2) is calculated using the numeric algorithms presented in the following
subsections. Our method accounts for a number of practical problems associated with background correc-
tion, normalization, and correction for the differential labeling. We describe these problems in the following
sections.

3.1. Background correction

The treatment of background is possibly one of the most controversial and the least explored problems
of microarray data analysis. Before discussing strategies for background correction, it is important to de� ne
how the target and the background signals are determined in the course of the image quanti� cation. In this
study, we assume that the quanti� cation software performs image segmentation (i.e., separation of different
targets) and integrates all pixels covered by a mask of regular shape and constant size. The size of the
mask is chosen suf� ciently large to encompass the entire spot and possibly some of the surrounding area.
The intensity of the target is then de� ned as the integral pixel count averaged over the mask. The intensity
of the local background is calculated in the area surrounding the target mask so that target masks of the
neighboring spots are excluded. This quanti� cation method ensures that pixels belonging to the spots are
not attributed to the background and the background level is not overestimated.

Many image quanti� cation packages provide an option to automatically subtract the local estimate of
the background from the intensity of the corresponding spot. This method of background correction is
not generally recommended, for two reasons. Firstly, typical background signal demonstrates signi� cant
variation with location on the array. Local background estimates may be affected by small-scale � uctuations
with high amplitude and their subtraction might result in additional noise in calculated expression ratios.
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Secondly, substantial systematic error can be incurred in regions of the microarray which are obviously
defective and characterized by unusually high level of background (e.g., regions with � uorescent smears).
In such regions, it is not uncommon to observe spots that have intensities lower than the surrounding
background. It is clearly inappropriate to subtract the background in such areas. Instead, they must be
identi� ed and processed separately from the rest of the array.

Thus, the treatment of background can be split conceptually into two problems: to locate areas of the
microarray occupied by defects with abnormal background properties and to � nd the optimal estimates for
the background correction factors BR.r /, BG.r / for spots which are not affected by defects. The defects,
which commonly result from slide coating failures, chemical stains, smudged spots, and dust particles,
are easily detectable by a human eye. However, identi� cation of defects presents a signi� cant challenge
for image quanti� cation software and is not even attempted by many programs. We developed statistical
means to separate regions of homogeneous background from those that harbor signi� cant defects. Our
method is based on the properties of the probability density function for the local background counts on
the microarray.

Figure 3A shows probability density functions for the logarithm of background intensity (PDFL) cal-
culated for three typical background samples (see Section 5.2 for sample de� nition). The logarithmic
transformation (see Section 5.1) was used to facilitate subsequent application of numeric algorithms re-
lying on quasi-symmetry and quasi-normality as the original probability density functions (PDF) for the
intensities were found strongly asymmetric and skewed to the right. The three samples represent three con-
secutive degrees of contamination by the defects. Case a is an “ideal” background without inhomogeneities
and defects, while c contains signi� cant defects, such as extended bright blotches. The presence of the
defects can be inferred from the form of the right tail of the respective PDFLs. Thus, in case a, the PDFL
vanishes faster than that for b. In case c, the defects are so prominent that they form a second maximum at
very high intensities. Further insight into the statistical properties of the background can be gleaned from
the normal quantile–quantile plots, which are shown for the same three background samples in Fig. 3B.
Remarkably, the PDFL for the normal homogeneous background (a) shows only minor deviation from
the normality. Samples b and c clearly demonstrate an earlier departure from the normality, which can be
attributed to the presence of the defects. Therefore, we assume that the “ideal” background is described
by a normal PDFL (log-normal PDF) with possibly slightly different standard normal deviations for the
right (¾ C) and left (¾ ¡) tails.

These observations can be employed to resolve areas with homogeneous normal background from

defective areas. The aim is to seek an upper estimate for con� dence limits I
G

B , I
R

B such that if the local
background intensity exceeds it, then, with a certain con� dence (e.g., 95%), the corresponding area is

deemed defective. To � nd upper con� dence levels I
G
B , I

R
B , one needs to estimate the parameters (¹, ¾ C)

for the right-side normal � t of the respective empirical PDFLs. Since experimental PDFLs are approximated

FIG. 3. Statistical properties of the background. (A) Probability density functions for the logarithm of the background
intensity (base 10). (B) Normal quantile–quantile plots for the PDFLs shown on the left panel.
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by a normal function only near their mode, it is important to use robust methods to estimate the parameters.
Thus, we found the least trimmed squares (LTS) estimator mLT S (Rousseeuw and Leroy, 1987) useful for
calculation of the mode ¹. In the LTS method, the squared regression residuals are computed as in the
usual least squares method. However, only a fraction ® of the smallest residuals is retained and used for
minimization. In this treatment, mLT S is resistant to the presence of up to .1 ¡ ®/ ¢ 100% of outliers.
Given robust estimates for the parameters (¹, ¾ C) and applying the “rule of two sigma” which gives 95%
con� dence for a normal distribution (Snedecor and Cochran, 1973), for the upper con� dence limit I B we
� nally get

IB D exp.¹ C 2¾ C/:

After setting aside the defective areas, the background correction factors BG;R.r / are calculated for the
spots in regions of homogeneous background. We argued above that the local background found by the
image quanti� cation software can exhibit undesirably high variability due to the abrupt spatial � uctuations
in background intensity. To avoid this problem one can calculate BG;R.r / as the median background
intensity computed for some neighborhood centered at r with size ±. The larger the ±, the higher is the
con� dence that BG;R.r / will not be affected by the outliers. At the same time, the choice of excessively
large ± can result in the loss of important information on the spatial variation of the background. Therefore,
it is necessary to � nd the optimal size of the sampling neighborhood so that BG;R.r / is both outlier resistant
and suf� ciently sensitive.

To achieve this, we investigated the spatial correlation of the background using Fourier analysis (see
Section 5.2). Figure 4 shows typical Fourier power spectra in which the ordinate value Pk represents the
contribution of the spatial frequency k=L (k D 0; : : : L=2; L D 200). The sharp maxima at low k indicate
the presence of signi� cant long-range background gradients. For k > k¤ ¼ 20, the spectrum is essentially
� at and the equal contributions of high frequencies create noise on top of the long-range spatial modes.
Therefore, it is reasonable to accept ± D L=k¤ as the optimal size of the sampling neighborhood. For the
example shown in Fig. 4, we � nd that ± approximately corresponds to six distances between spots. Thus,
neighborhoods of 5 £ 5 or 7 £ 7 spots are optimal for the background sampling.

3.2. Normalization

In practice, the scale factors AG.r / and AR.r / described by our model cannot be directly extracted from
the experimental data. Therefore, to obtain the normalization factor AR.r /=AG.r /, one needs additional
information or a biological hypothesis. This hypothesis is often formulated as follows: assuming that certain
genes should not change the expression level, � nd the normalization factor such that the expression ratios
of these genes are indeed close to one. Then the expression ratios for the rest of the genes are calculated
relative to the baseline established by the “constant” genes. These assumptions hold for some experimental

FIG. 4. Fourier power spectra computed for the background samples a and b whose PDFLs are shown in Fig. 3.
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conditions but fail in the others. The full set of conditions for which the method holds de� nes its domain of
biological validity. In this section, we consider four widely used normalization methods and discuss their
applicability. The � tness of a normalization method is de� ned by the breadth of experimental conditions for
which it is valid and the extensibility of the method for possible spatial dependence of the normalization
factor.

It is a common practice to assume that the normalization factor is independent of the location. This
assumption is not always true and needs to be validated for each experimental setup. An example of a
microarray experiment that displays spatial dependence of the normalization factor is shown in Fig. 5. In
this experiment, an RNA sample was divided into two equal aliquots. One was reverse-transcribed with
the Cy3 label and the other with Cy5. The two labeled cDNA samples were cohybridized to a microarray.
Since the sample and the control are biologically identical, each ratio in this experiment is expected to be
equal to or close to one. The observed ratios were averaged over subarrays, or grids, comprising 400 spots
and the results were plotted as a 2D function of the corresponding grid indexes. One sees the systematic
dependence of average ratios on the location that takes the form of the pronounced gradient such that
the normalization factor varies from 0.7 on the left side of the array to 1.4 on the right. This example
demonstrates that the spatial dependence of the normalization factor cannot be simply dismissed. None of
the existing normalization methods that we describe in the following subsections addresses these issues.
Where possible, we provide an extension of the existing normalization methods to include the case of
spatial dependence.

The method of housekeeping genes. The concept of housekeeping genes emerged from the observation
that some genes involved in basic cell metabolism seem to be insensitive to many experimental perturba-
tions. In this method, one seeks the normalization factor that minimizes the distance between the ratios
of housekeeping genes and unity. A detailed mathematical treatment for normalization using 78 putative
housekeeping genes was developed by Chen and coworkers (Chen et al., 1997). Unfortunately, in any indi-
vidual experiment, identifying such genes is a nontrivial problem and different experimental groups often
arrive at different lists of candidate housekeeping genes. Recent advances in high-throughpu t expression
pro� ling have resulted in erosion of the concept of “housekeeping genes,” as many genes earlier thought
to be constant were shown to change their expression under some experimental conditions (Schuchhardt
et al., 2000). It should also be noted that the approach of housekeeping genes is valid only in experiments
in which cells reach a stable steady state. In extreme conditions that lead to massive irreversible changes
in cellular homeostasis and often to cell death, the concept of housekeeping genes is inappropriate. Prac-
tical application of the housekeeping gene method is also complicated by the fact that it cannot be easily
extended for the case of spatial dependence of the scale factors AG.r /, AR.r /.

FIG. 5. Spatial dependence of the scaling factors AG, AR . Averaged per grid expression ratios (solid line) obtained
for a yeast microarray are shown as a function of the grid indexes (4 £ 8).
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The method of control spots. Another method of normalization, in which one arrays an unrelated DNA
and adds exogenous RNA to the sample, overcomes some of the problems of the method of housekeeping
genes. Typically, a DNA species (gene) Q or a group of genes Qi whose sequence is suf� ciently dissimilar
from all those under study is spotted on the microarray at speci� c locations. Before labeling, equal amounts
of Q mRNA are added to both sample and control. In this treatment, Q essentially becomes a “housekeeping
gene” with a guaranteed actual “expression” ratio of T a

Q ´ 1. In practice, the observed ratios of the control
spots, T e

Q, are scattered around 1 and the presence of several control spots is necessary to ensure statistical
accuracy.

By using spatially compact groups of control spots, one is able to remove the exponential spatial
dependence of the scaling factors. To demonstrate this, consider a ratio Ti.r / D AG.r /° G

i =AR.r /° R
i ¢ T e

i

that represents gene i spotted at location r and the average ratio TQ.r 0/ D AG.r 0/° G
Q =AR.r 0/° R

Q observed
for a nearby group of control spots. Assuming the r and r 0 are in close proximity and A.r / ¼ A.r 0/,
we get

Ti.r /

TQ.r 0/
D

° G
i ° R

Q

° R
i ° G

Q

T e
i :

This relationship demonstrates that normalization using control spots can be employed to resolve the
spatial dependence; however, the ratio baseline may be systematically offset because of two factors. First,
all expression ratios are divided by an unknown factor 0Q D ° G

Q =° R
Q which may be arbitrarily far from 1.

Additional offset can arise if there is a systematic preference for incorporation of Cy5 or Cy3, for example,
if under some conditions of the labeling reaction ° G

i > ° R
i for most genes.

The method of constant majority. The method of constant majority assumes that the majority of genes
do not change their expression level in response to the experimental perturbation. This, however, does
not imply that the differentially expressed genes must constitute only a small fraction of all genes. As
we show below, under appropriate formalization, this method is valid even if up to 50% of the genes
are differentially expressed. The use of the method appears to be appropriate under the same biological
restrictions as apply to the method of housekeeping genes. Both methods presume that the cell responds to
the experimental treatment without a total disruption of gene expression. However, the method of constant
majority is more � exible because it does not require that a certain subset of genes remains unchanged
under all possible experimental conditions. In addition, one does not need to know in advance which genes
have not changed their expression level. In this section, we � rst discuss the method of constant majority
in a simplifying assumption of the independent-of-space normalization factor. Then we demonstrate how
it can be extended for the case of spatial dependence.

The probability density function for the distribution of ratios can be used to formalize the underlying
assumptions of the method of constant majority. Intuitively, it is obvious that since the majority of genes
do not change their expression level, the ratio baseline lies somewhere in the vicinity of the PDF mode.
The rigorous treatment was developed by Chen et al. (1997). Chen and colleagues developed an analytic
expression for the PDF of ratios exhibited by the constant genes. It was assumed that the intensity of the

� uorescent signals on both channels IG
i D I

G

i C "G
i .IR

i D I
R

i C "R
i / is measured with normally distributed

errors "G
i , "R

i . It was also postulated that the corresponding coef� cient of variation C is independent

of the dye type and is constant for the entire set of genes. Despite the fact that I
G
i D I

R
i , due to the

measurement noise "
G;R
i , the expression ratio of a “constant” gene is a stochastic variable and is described

by an asymmetric, skewed-to-the-right PDF. The surprising conclusion of their study was that the mode ¹

of the PDF satis� ed the inequality ¹ < 1 for all C > 0. Therefore, contrary to the intuitive expectation,
the correct normalization factor m (in this case m ´ 1) is not equal to ¹. Moreover, the error incurred
by normalizing the PDF mode to unity may reach 10–15% for realistic values of C. On the basis of their
model, Chen and colleagues also developed an iterative normalization method that requires the parameter
C to be estimated from the data. The estimation procedure explicitly relies on the subset of genes which
are known to be constant (i.e., the method requires “housekeeping” genes).

Here we demonstrate that, with some alteration, the model of Chen and colleagues can be used to devise a
normalization method that does not require estimation of C and does not rely on the housekeeping genes.
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We transform the PDF de� ned by Chen et al. (1997) into the corresponding PDFL using logarithmic
transformation of ratio z D ln t (see Section 5.1) and obtain

f .z/ D
eZ.1 C eZ/

p
1 C e2Z

p
2¼C.1 C e2Z/2

¢ exp
³

¡
.eZ ¡ 1/2

2C2.1 C e2Z/

´
: (3)

Both the pre-exponential factor and the exponential itself are even functions of z and, therefore, f .z/ is a
symmetric function with both mean and mode equal to zero, independently of the value of C. For small z

.jzj ¿ 1/, the Taylor expansion eZ ¼ 1 C z can be applied. This gives

f .z/ ¼ f ¤.z/ D
1

p
2¼ ¢

p
2C

¢ exp
³

¡
z2

4C2

´
; (4)

a normal distribution with ¾ D
p

2C . Although this estimate is strictly valid only in a small neighborhood
of the origin, numerical calculations show that both functions remain close in L1 norm on the entire z axis
(i.e.,

R C1
¡1 jf .z/ ¡ f ¤.z/jdz < ±/.

These properties of the PDFL can be exploited to great advantage. First, for a set of genes whose
expression is constant, it implies that the value for the normalization factor given by the exponent of the
PDFL mode (same as the mean) is equal to the geometric mean mg of the expression ratios. Second, for
practically relevant experiments involving differentially expressed genes, it allows one to apply a number
of well-developed computational methods that explicitly rely on symmetry and normality of the probability
density function in question. Since in the presence of differentially expressed genes the actual PDFL is no
longer strictly symmetric, the mode should be located by one of the robust techniques, e.g., the method
of least trimmed squares (LTS). For the symmetric probability density function, the mode is resistant to
up to 50% of outliers (Rousseeuw and Leroy, 1987). Therefore, in the best case in which the numbers
of up- and down-regulated genes are approximately equal and the quasi-symmetry of the ratio PDFL is
preserved, the breakdown point for the method of constant majority can be estimated as 50%.

The method of constant majority can be extended to accommodate the spatial dependence of A.r / in the
following way. The underlying assumption of the method, if true for the entire set of genes (population),
should also hold for suf� ciently large subsets (samples). Suppose that the entire microarray is partitioned
into subdomains with size L and number of spots N . Then, if N À 1 and the gradients of A.r / are small
on the scale of the domain (rA.r / ¢ L < 1), we can perform the normalization independently inside each
domain. Here we also assume that genes are not spotted on the array in any particular order, e.g., according
to functional categories, and any spatial partition would represent a statistically independent sample of the
entire population.

As in the case of background correction, the optimal size of the partition is a tradeoff between spatial
speci� city and statistical signi� cance. An estimate for the size of the partition can be derived from the
following consideration. According to (4), let the logarithm of ratio z D ln t be normally distributed with
population mean ¹ D ¹0 and standard deviation ¾ . Then a partition (sample) mean m D

P
zi=N can

be applied to test the hypothesis H0, whether the sample belongs to the population. If H0 is true, the
observed difference between m and ¹ is statistically insigni� cant and no correction for spatial dependence
is necessary. The acceptance interval for H0 with con� dence .1 ¡ ®/ ¢ 100% is given by Walpole et al.
(1998):

jm ¡ ¹0j < Z®=2
¾

p
N

;

where Z®=2 is the standard normal distribution z-value for ®=2 (Z®=2 D 1:96 for ® D 0:05). The optimal
number of spots per partition N can now be estimated as a function of maximum allowable tolerance
± D jm ¡ ¹0j as

N ¼
³

Z®=2¾

±

´2

:

If we support that ¾ D 0:3, ± D 0:05, and ® D 0:05 (95% con� dence), then the desired N is 144. Recalling
that a signi� cant proportion of spots (e.g., 60%) may have poorly de� ned ratios due to their low intensity
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and are not suitable for normalization, we arrive at an estimate of ¼ 400. This number corresponds to
a typical microarray grid consisting of 20 £ 20 spots. Thus, this simple estimate corroborates the use of
microarray grids as normalization domains.

The method of integral balance. Another normalization method is based on the assumption that the
total levels of gene expression in the sample and the control are the same. Prior to the labeling reaction,
the total amounts of RNA in sample and control are usually equalized. Therefore, one expects that after
correct normalization the integral intensity of all Cy3 signals should be equal to that of Cy5 signals. The
normalization factor is thus de� ned as the ratio of the total sums of signal intensities on the two channels.
In this treatment, differentially expressed genes correspond to those that change their relative contribution
to the integral signal. An important caveat to this method is that, in a microarray experiment, the total
amount of RNA isolated from the cells is equalized, but only mRNA levels are measured. All experimental
conditions under which cells are expected to signi� cantly increase or decrease the total level of mRNA
transcription should be considered as potentially problematic. The extension of the method of the integral
balance for the case of a spatially dependent normalization factor can be achieved in the same way as for
the method of constant majority. The normalization factors are computed independently for the subdomains
of the array in question.

It is often argued that the relative contribution of high intensity spots into the normalization sum would
signi� cantly outweigh that of the low intensity ones and a handful of high intensity spots with outlying
ratios might negatively affect the normalization. However, our analysis shows that this is not the case for
a typical microarray experiment. The integral signal for a channel can be presented as

IR;G D
Z 1

0
xf R;G.x/ dx;

where x is the signal intensity and f .x/ is the PDF for the signal intensities on the array. The contribution
of a certain range of intensities is therefore proportional to xf .x/. Figure 6 shows a typical behavior of
xf .x/ together with the underlying PDF. One sees that those spots that contribute to the normalization
lie in a suf� ciently broad range of magnitude, in this case, between 1,000 and 40,000 counts. Within this
range xf .x/ has a relatively � at shape; e.g., the contribution of spots with intensity 2,000 is roughly equal
to that of spots with count 20,000. Neither low nor very high intensity signals contribute signi� cantly to
the integral signal. This type of behavior was observed for the majority of our human and yeast samples.

The method of integral balance inherently possesses some degree of resistance to outliers since summing
the intensities prior to calculation of the ratio effectively smoothes out the contribution of individual spots
with potentially outlying ratios. However, some heuristics can be implemented to further improve the

FIG. 6. The contribution of spots with different intensities to the normalization sum for the method of integral
balance. The pro� le of xf .x/ is shown by the solid line (right scale); underlying PDFL f .x/ is shown by the dashed
line (left scale).
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robustness of the method. We tested the following iterative procedure, which can be seen as an extension
of trimming (Barnett and Lewis, 1994). The initial normalization factor º0 was computed as a ratio of the
total signal intensities of all spots within selected domain. Then all data points were normalized by º0
and those spots whose ratio falls into the range [1=´; ´] (with an empirically chosen value of trimming
factor ´ D 2) were selected to calculate the integral intensities in the next step to give º1. After a few
iterations, this procedure converges to some asymptotic factor º, provided that the distribution of the ratios
is unimodal. For experiments with a moderate number of differentially expressed genes, the methods of
constant majority and integral balance show predictable convergence in estimates for normalization factors
as illustrated by Fig. 7.

3.3. Differential labeling

The information extracted from a single microarray is not suf� cient to correct the distortion of the ratios
caused by the differential incorporation of the dyes (° G

i 6D ° R
i ). It is common to deal with this problem

by performing two experiments with the same sample RNA and control RNA but labeled with alternate
dyes. In the notations used throughout this paper, it was assumed that the sample was labeled with Cy3
and the control with Cy5 (direct order). Thus, for the inverse experiment in which the sample is labeled
with Cy5 and the control with Cy3, model (1) should be modi� ed by alternating the superscripts R and
G. By performing background correction and normalization separately for both experiments, we arrive at
two vectors of ratios T D

i D 0iT
e.D/
i and T I

i D 0¡1
i T

e.I /
i , where 0i D ° G

i =° R
i . The superscripts D and

I refer to the quantities found in the direct and the inverse experiments respectively. Ideally, the effective
expression ratios T

e.D/
i and T

e.I /
i obtained in the direct and the inverse experiments should be equal.

However, in practice, T
e.D/
i and T

e.I /
i are not identical as they incorporate different experiment-dependent

noise terms "
G;R
i (see de� nition of effective ratios in Section 3).

Finally, the geometric average,

T
e

i D
q

T D
i T I

i D
q

T
e.D/
i T

e.I /
i ;

gives an unfolded value which provides an unbiased estimate for the true expression ratio T a
i . Figure 8

presents microarray data obtained for the stimulation of human cells with interferon. Both direct and in-
verse experiments were performed in duplicate. Four arrays (direct: numbers 1, 2; and inverse: 3, 4) were
corrected for background and normalized. The log-transformed ratios (base 2) were plotted 1 versus 3

FIG. 7. Comparison of normalization factors calculated per grid (24£ 25 spots) for an array with 32 grids computed
with the methods of constant majority (solid) and integral balance (dash). Grids, arranged as 4 £8 array, are numbered
in the order from left to right and top to bottom.
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FIG. 8. Reproducible differential labeling. Log-transformed (base 2) ratios are plotted vs. ratios obtained in experi-
ment with inverse labeling. Two replications are shown by diamonds and open triangles. Differentially labeled genes
display clear anticorrelation and, therefore, align along the line y D ¡x.

(diamonds) and 2 versus 4 (triangles). This representation clearly reveals that we can distinguish differen-
tially expressed from differentially labeled genes. Indeed, since

log2 T D
i D log2 T

e.D/
i C log2 0i;

log2 T I
i D log2 T

e.I /
i ¡ log2 0i ;

differentially expressed genes demonstrate a signi� cant correlation between the direct and inverse experi-
ments and, hence, a signi� cant projection onto the main diagonal y D x. On the contrary, if cDNAs are
differentially labeled, they exhibit anticorrelated ratios and align along line y D ¡x . A considerable number
of genes show some degree of preference for incorporation of either dye (see Fig. 8). However, a few ratios
fall signi� cantly out of the range [0.5, 2.0], for example, the ratio demonstrated by phosphofructokinase
K6PP. It is critical that these genes are eliminated from the � nal data set.

By comparing several direct-inverse pairs of experiments performed at different times, we found that
the incorporation ef� ciencies, °i , depended sensitively on the conditions of the labeling reaction, but not
on the source of RNA. Therefore, the genes that exhibit differential labeling may change from experiment
to experiment. It may be advisable that both direct and inverse experiments are performed simultaneously,
with the same preparation of RNA and � xed conditions of the labeling reaction.

4. DISCUSSION

The motivation for this paper was to provide a uni� ed framework for the processing of DNA microarray
data. On the basis of the analysis of hundreds of microarrays, we identi� ed plausible causes for the
systematically observed distortions and developed a model relating the abundance of mRNA transcripts to
the measured signal intensities. The model strives to capture the major factors that affect labeling, scanning,
and image quanti� cation techniques. By applying its inverse transformation to the raw data, we were able
to unfold it, i.e., recover a somewhat noisy image of the actual mRNA ratios. In some detail, we discussed
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our methods for the statistical estimation of the model parameters. Two features of these algorithms were
emphasized as indispensable: statistical robustness, resistance to outliers in particular, and extensibility for
accommodation of spatial dependence.

For practical application, it is important to estimate the success of the unfolding process. A number
of experimental techniques are available for validation of the expression ratios found in a microarray
experiment. These methods, however, can be applied only to a very limited number of important genes.
A different approach is necessary to estimate validity of expression ratios for the entire set of genes
spotted on a microarray. Our strategy to address this problem followed from the very idea of unfolding.
The method is designed to remove systematic errors introduced by the microarray technology and provide
close approximation for the true expression ratios. Such systematic errors, e.g., those due to background or
arbitrary scaling factors, vary widely from one array to another. Therefore, the reproducibility of correctly
unfolded replications of the same experiment (same sample and control hybridized to different arrays)
should be distinctively higher than that of the corresponding raw data. The interchip variability coef� cient
# , which is introduced in Section 5.4, can be applied for such a comparison.

We consider the unfolding to be successful if, upon removal of the systematic errors, the variability
between replicate experiments does not exceed the variability inherent in a single array (e.g., as quanti� ed
by the intrachip variability coef� cient ¾! introduced in Section 5.3). Hence, the target value for # is
1. To verify the performance of the method, we computed the variability coef� cient for several pairs of
microarrays (each pair being two replicates of the biologically identical experiment). First, #u was obtained
for the unfolded expression ratios. For comparison, #g was calculated for the partially processed raw data.
The preprocessing, in the form of the global normalization (regardless of possible spatial dependence)
without background correction, was applied since the direct comparison of raw data by means of # is not
strictly correct. Indeed, just by varying the scaling factors AG, AR for otherwise identical data sets, we
could obtain arbitrarily large values of # . For control, #ru and #rg were also computed for randomized
unfolded and randomized globally normalized raw data sets, respectively. The randomization was achieved
by calculating the statistics ! for randomly permuted pairs of genes.

The results of these tests are summarized in Table 1. The performance of the unfolding appeared to be
nearly optimal because all #u were close to 1 but slightly higher. In all cases, signi� cant improvement
was gained over global normalization without background correction. The last two columns of Table 1
compare relative improvement of the variability coef� cient for actual and randomized data. One observes
negligible improvement for the random data. This might be attributed to nonspeci� c factors. For example,
global normalization, when applied to the raw data, does not remove spatial gradients, and therefore the
ratio PDF for the randomized data is wider than that for the properly unfolded data.

For most users, the relatively high cost of microarray experiments prohibits the multiple replications that
are required for statistical assurance. Often, with only a few replicates, the poorer experiments should be
eliminated. Methods that can estimate the overall quality of an individual microarray are therefore quite
important. Several quantities introduced in this study can be utilized to this end. For example, the measure
of intrachip variability ¾! can be used to single out experiments with unusually high levels of noise.
The complementary approach compares the intensity of a spot to the intensity of the background noise.
The necessary statistic here is a signal-to-noise ratio (SNR) de� ned as a difference between intensities
of signal and local background normalized by the measure of background dispersion. The distribution of
the SNR on a microarray provides a clear and easily comprehensible picture of the overall quality of an
experiment.

Table 1. Test of Performance of the Unfolding for Four Pairs of
Replicate Microarray Experiments

#u #g #ru #rg
#g ¡ #u

#g C #u

#rg ¡ #ru

#rg C #ru

1 1.18 2.15 6.07 6.21 0.291 0.011
2 1.27 2.53 7.50 7.75 0.331 0.016
3 1.22 2.43 5.45 5.61 0.332 0.014
4 1.15 2.12 5.32 5.52 0.296 0.018
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The analysis presented in this paper also helps to elucidate areas of the microarray technology that
contribute most to variability and uncertainty of the results. For example, the classical labeling procedure
appears to be one of the major contributing factors. The coef� cients of incorporation °

R;G
i , depending on

type of dye and varying from gene to gene and experiment to experiment, introduce signi� cant variability.
To overcome this problem, a number of labeling methods which ensure that every cDNA molecule car-
ries the same number of � uorescent labels are being currently developed (e.g., the 3DNATM technique,
Genisphere). With the labeling problem solved, a universal normalization method could be devised with
the help of arti� cially prepared controls carrying exactly equal numbers of dyes of both types. Thus, con-
stant development of experimental techniques complemented by ongoing improvement of analysis methods
ensures that microarray technology will live up to the high expectations of modern genomics.

5. APPENDIX

5.1. Transformation y D ln x

Logarithmic transformation has been proved useful in dealing with quantities whose standard deviation
is proportional to the mean (Snedecor and Cochran, 1973) and therefore can be applied to expression
ratios. Suppose that random variable x is distributed according to the PDF f .x/. Then the log-transformed
variable y D ln x is described by the PDF for the logarithm (PDFL) g.y/ given by

g.y/ D eyf .ey/:

The properties of PDF and PDFL may differ signi� cantly. Consider PDFL g.y/ represented by a Gaussian
normal function N.0; ¾ /; then the corresponding PDF is given by the log-normal distribution

f .x/ D
1

p
2¼¾ x

exp

³
¡

.ln x/2

2¾ 2

´
:

While g.y/ is symmetric with zero mean, mode, and median, f .x/ is a strongly asymmetric, skewed to the
right function whose mean, mode, and median depend on ¾ . For example, solving the equation f 0.x/ D 0,
we � nd the position of the PDF mode

¹ D e¡¾ 2
:

Consider now a � nite-sized sample xi , i D 1; N log-transformed into set yi . By calculating sample mean
my D

P
yi=N and transforming it back, one � nds the geometric mean of the original sample

mg D N
p

x1 ¢ : : : ¢ xN :

This quantity is often more useful (e.g., when dealing with ratios) than the simple arithmetic mean and is
extensively utilized throughout this paper.

5.2. Preparation of background samples

To obtain the upper con� dence limit IB and background correction factors BR.r /, BG.r /, we needed to
study the global statistical properties of the background as well as its spatial correlation. Towards this aim,
we performed several experiments using total yeast RNA and complete yeast genome microarrays. The
intensity of background on both channels was integrated on long strips partitioned into rectangular arrays
of 20 £ 200 square elements with side l D 12 pixels (corresponding to 120 ¹m in actual array dimension).
This size of the element was selected to equalize its area with that of an average spot. The strips were
positioned on images of 10 randomly chosen microarrays in regions free of spotted DNA to ensure that
we were measuring a background signal uncontaminated by fractured, irregular, or smeared spots. To
investigate spatial correlation of the background, we performed Fourier analysis along each column of 200
elements. The resulting power spectra were averaged over 20 such columns for every sample.
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5.3. Intrachip variability

The microarrays used in our study have duplicate spots for every cDNA clone (gene) which are printed
next to each other. Therefore, in a single microarray experiment, we obtain two ratios t1 and t2 for every
gene. This feature can be exploited to evaluate the level of the ratio noise for a given microarray experiment.
Consider the statistics

! D
p

2
t2 ¡ t1

t1 C t2
;

which describes the relative variability of the ratios. The factor
p

2 is introduced so that j!j is equal to the
coef� cient of variation for a sample of size two. (This makes de� nition of ! easily extensible for cases
with more than two replicate spots per gene.)

The physical proximity of the two spots on the microarray ensures that all distorting factors that sys-
tematically vary with r are essentially equal for both spots. In addition, ! does not change if both t1 and
t2 are multiplied by the same factor. Therefore ! effectively measures purely random, spatially uncorre-
lated ratio noise emerging due to inherent variability of hybridization, � uorescence detection shot noise,
or quanti� cation errors. A probability density function of ! calculated for a typical microarray is shown
by the thick solid line in Fig. 9. The Lorenzain shape of the PDF can be explained by the fact that the
statistical properties of ! depend on the spot intensities. To demonstrate this, the entire population of spots
was divided into three equal parts according to the intensity, and corresponding distributions of ! were
computed. The resulting PDF’s are shown in Fig. 9 by thin dotted lines. Note that their shapes are closer
to the expected normal curves. Informative estimates for ratio noise can be obtained by averaging j!j
over groups of spots with similar intensities. In our experiments, we found the variability of ratios to be
on average 5–7% at the higher end of intensity distribution and 20–25% at the lower end. The standard
deviation, ¾! , of the statistic ! can be employed to characterize intrachip variability of a given experiment
with a single value.

5.4. Interchip variability

In practice, it is necessary to estimate the reproducibility of replicate microarray experiments. Consider
the case of two replicates in which every gene is represented by ratio t1 on the � rst array and t2 on the
second. After logarithmic transformation of ratios x D ln t1, y D ln t2, the results of both arrays can be
represented on place (x; y) by a bivariate distribution, which under certain assumptions, is also normal (see
Section 3.2). It is common to characterize the strength of linear association between two random variables
with correlation coef� cient

½ D
¾xy

p
¾x¾y

;

FIG. 9. Probability density function for ! statistic (solid line). Corresponding PDFs for the three intensity groups
are shown by dotted lines: a shows the lower third of the intensities, b the middle, c the upper.
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where ¾x and ¾y are respective standard deviations of x and y, and ¾xy is their covariance. However, ½ is
not an adequate measure of reproducibility for replicate experiments, and its value can be misleading. To
demonstrate this, we applied further transformation of the variables

u D
x C y
p

2
D

p
2 ln

p
t1 ¢ t2;

v D
y ¡ x
p

2
D

1
p

2
ln

t2

t1
;

which results in the rotation of the axes by ¼=4 (see Fig. 10). Here, u is the logarithm of the geometric
mean of t1 and t2, and contains no information on their difference. On the contrary, the value of v only
shows the difference between t1 and t2. (In fact, u and v are the principal components for the considered
bivariate ratio PDFL.) Expressing x, y through u, v after some algebra we � nd

½2 D
¾ 2

u ¡ ¾ 2
v

¾ 2
u C ¾ 2

v

;

in which ¾u, ¾v are respective standard deviations of the PDFL in the rotated axes u, v. From the above
discussion, it follows that ¾u effectively represents the variability of the expression ratios within the
experiment, whereas ¾v is indicative of the variation between the replicates. Therefore, the ½ value for
two replicates of an experiment with a large number of differentially expressed genes (large ¾u; case
a in Fig. 10), is always higher than that for two replicates of an experiment with no changers but the
same variability ¾v (case b). The correlation coef� cient is thus unsuitable for comparing reproducibility of
different experiments. However, ¾v can be employed as a measure of interchip variability.

The approach, which we developed to measure intrachip variability, can be extended to estimate variation
between replicates. Consider again the statistic ! but with t1 and t2 now being ratios on the � rst and
second arrays, respectively. By the same argument, the standard deviation ¾! is an integral measure of the
discrepancy between the two replicates. Despite the obvious difference in de� nition, ! and v are closely
related. Indeed, making use of the log-transformed variables x and y, we � nd

! D
p

2
ey ¡ ex

ey C ex
D

p
2 tanh

³
y ¡ x

2

´
D

p
2 tanh

³
v

p
2

´
:

In most cases, t1 and t2 are not signi� cantly different and jvj < 1 .j ln t2=t1j <
p

2/. This allows us to
develop a hyperbolic tangent in Taylor series to obtain an approximation ! ¼ v.

FIG. 10. Diagram illustrating transition to the principal components (u, v). Two hypothetical bivariate PDFs with

equal measure of variability ¾v and different ¾u (¾
.a/
u > ¾

.b/
u ) are schematically drawn as ellipses.
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Note that both ¾! and ¾v measure interchip variability regardless of the level of noise present in individual
arrays. In practice (see Section 4), one often wants to know how variability between two replicates relates to
the variability inherent in each of them. To address this issue, a normalized interchip variability coef� cient
can be de� ned as

# D
¾12p

¾11 ¢ ¾22
;

where ¾11, ¾22 are the intrachip variabilities of the two replicates.

5.5. Preparation of microarrays

The microarrays that we used in our experiments (Microarray Centre, Ontario Cancer Institute), were
printed on standard modi� ed-glass slides (Corning) by a 32-pin contact arrayer (SDDC II, Engineering Ser-
vices Incorporated). The full genome yeast array comprised 6200 ORF’s. The large human array consisted
of two slides bearing approximately 19,000 human EST clones (Genetic Systems). A subset of 1,718 clones
for which protein products are characterized in SwissProt was singled out for a smaller (1.7K) human ar-
ray. Detailed information on the layout of microarrays can be found on the site of the Microarray Centre
(http://www.oci.utoronto.ca/services/microarray). The protocols used for preparation of RNA, hybridiza-
tion, and washing of microarrays can be downloaded from our website (http://january.med.utoronto.ca).
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