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Transitions to Line-Defect Turbulence in Complex Oscillatory Media
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The transition from complex-periodic to chaotic behavior is investigated in oscillatory media
supporting spiral waves. We find turbulent regimes characterized by the spontaneous nucleation,
proliferation, and erratic motion of synchronization defect lines which separate domains of different
oscillation phases. The line-defect dynamics is controlled by the competition between diffusion, which
reduces line length and curvature, and phase-gradient-induced growth. The onset of each type of defect-
line turbulence is identified with a nonequilibrium phase transition characterized by nontrivial critical
exponents.
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Two-dimensional reactive media with oscillatory dy
namics support a variety of spatiotemporal patterns inclu
ing spiral waves. In the vicinity of the Hopf bifurcation
spiral waves are described by the complex Ginzbur
Landau equation (CGLE) [1,2]. Spiral waves can als
exist if the local dynamics is complex-periodic or eve
chaotic [3,4]. While the basic features of such regim
are akin to those of the CGLE, a complete description
complex oscillatory media cannot be given in terms of th
CGLE. For example, these media may undergo bifurc
tions where the period of the orbit doubles at almost eve
point in space [4,5]. The rotational symmetry of spira
waves is then broken by the presence of synchronizat
defect lines where the phase of the local orbit changes
multiples of 2p. These defect lines have been seen
simulations of excitable media [6] and in experimen
on the spatially inhomogeneous 3D Belousov-Zhabotins
(BZ) reaction medium [7]. Recent BZ experiments in a
open flow reactor by Park and Lee [8] have convincing
demonstrated their existence and properties.

In this Letter, we study the fate of the synchronizatio
defect lines as the system parameters are tuned to
proach the domain where spiral waves have chaotic lo
dynamics. We show the existence of a new type of spat
temporal chaos where the global temporal periodicity
the medium is broken by the spontaneous nucleation, p
liferation, and erratic motion of the defect lines separa
ing domains of different oscillation phases. We descri
the basic mechanisms governing the dynamics of the
fect lines and provide evidence that the onset of each ty
of defect-line turbulence is a nonequilibrium phase tra
sition with nontrivial critical exponents. We also stud
inhomogeneous media without spirals where line moti
has a different nature and different scaling laws due to t
absence of overall phase gradients.

We study reaction-diffusion (RD) systems where the l
cal kinetics is described byR���c�r, t����, a vector of non-
linear functions of the local concentrationsc�r, t�. For
simplicity, we assume that all species have the same d
fusion coefficientD. While our considerations should
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apply to any RD system exhibiting a period-doubling cas
cade to chaos, the calculations described here [9] were c
ried out on the Rössler model [10] whereRx � 2cy 2 cz,
Ry � cx 1 Acy, andRz � cxcz 2 Ccz 1 B. We inves-
tigate the behavior of the system asC increases, with other
parameters fixed atA � B � 0.2 andD � 0.4.

Beyond the Hopf bifurcation, the system supports a sp
ral solution and infinitely many spatially blocked configu
rations of spirals coexist with spatially inhomogeneou
states without spirals. This multistability is preserve
away from the Hopf bifurcation, even forC values cor-
responding to chaotic regimes. The blocked configur
tions form irregular cellular structures, similar to thos
observed in the CGLE. Cells are centered on spiral cor
and their polygonal boundaries are delimited by shoc
lines where spiral waves from two neighboring cells co
lide [cf. Fig. 1(b)].

As C increases beyond the Hopf point, the Rössle
ordinary differential equation (ODE) system exhibits a
period-doubling route to chaos followed by band-chaot
regimes intertwined with windows of periodic behavior
In spatially distributed media supporting spiral wave
two period-doubling bifurcations take place atC � 3.03
and C � 4.075. These values are larger than the corre
sponding values for the ODE, 2.83 and 3.86, respective
These shifts in the bifurcation diagram arise from the con
centration gradients created by the spiral waves and th
values depend on the spiral wavelength. In spatially in
homogeneous media without spiral waves the spatial gr
dients are small and the shifts of the bifurcation points a
not detectable. The period doublings in media with spir
waves are necessarily accompanied by the appearance
synchronization defect lines (V curves) whose existence
is required to reconcile the doubling of the oscillation
period and the period of rotation of the spiral wave [4,5]

In the period-2 regime (3.03 # C # 4.075), a single
type of synchronization defect line exists. TheseV curves
are defined as the loci of those points in the medium whe
the two loops of the period-2 orbit exchange their pos
tions in local phase space and the dynamics is effective
© 1999 The American Physical Society
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FIG. 1. The evolution of the medium in the V2 line turbulent
regime at C � 4.38 for a square system of linear size L � 256.
Panel (a) shows the cz�r� field in coarse-grained grey shades
which do not resolve the period-4 structure. The dashed line
indicates the V1 defect line. Panels (b), (c), and (d) are equally
separated in time by 48 spiral revolutions and show the j2�r�
field color coded by grey shades. The fine dashed lines in panel
(b) mark the centers of the shock lines.

period-1. The period-2 oscillations on opposite sides of
the V curve are shifted relative to each other by 2p (a
half of the full period). A medium with period-4 dynam-
ics may support two types of synchronization defect lines
corresponding to the two different possible types of loop
exchange for a period-4 orbit. Across V1 curves, which in-
herit properties of the V curves, the two period-2 bands of
the period-4 orbits exchange, leading to a 62p phase shift
across them. The V2 curves correspond to the exchange
of loops within the two bands, a finer rearrangement of
the local cycle. Along them, the dynamics is effectively
period-2 and there is a 4p phase shift as the curves are
crossed [11].

Synchronization defect lines can be conveniently located
by constructing scalar fields encoding the distance between
loops of the period-4 orbit in local phase space. To this
aim, we chose to take advantage of the regular succession
of peaks in the local time series of cz , whose heights are
in one-to-one correspondence with the various loops of the
orbit. Calculating, at each point r, four such consecutive
concentration maxima Ai�r� and ordering them so that
A1�r� # A2�r� # A3�r� # A4�r�, one may construct the
scalar fields j1�r� � A4�r� 2 A1�r� and j2�r� � A4�r� 2

A3�r�. In the period-4 case, j1�r� and j2�r� take on fixed
nonzero values at points in the medium away from spiral
cores and shock lines and vanish at points where the loop
exchanges occur [12]. Indeed, j1�r� decreases to zero on
the V1 curves while j2�r� vanishes on both the V1 and
V2 curves. In the following, we study the fate of the V
lines and use j1�r� and j2�r� both to determine their length
and to visualize them. The j2�r� field corresponding to
Fig. 1(a) is shown in Fig. 1(b). The thick vertical line
connecting the spiral cores is an V1 curve, while the
thinner lines are V2 curves.

On the shock lines, where the phase gradient vanishes,
the local dynamics is approximately that of the Rössler
ODE, and is thus always more advanced along the
bifurcation diagram. In particular, chaos first appears
on the shock lines (for C � 4.20). For C � 4.3, where
most of the medium is still in the period-4 regime, two-
banded chaos is seen on the shock lines [Fig. 2(a)].
These localized chaotic regions give rise to fluctuations
which may result in the creation of “bubbles”— domains
delineated by circular V2 curves [Fig. 1(b)]. For C #

CV2 � 4.306, the bubbles are formed with a size smaller
than a certain critical value and collapse shortly after their
birth. As C increases beyond CV2 , the bubble nuclei
begin to proliferate, forming large domains whose growth
is limited by collisions with spiral cores or other domains.

Figures 1(b)–1(d) illustrate the typical life cycle of
a domain. The shock lines are nucleation sites of V2
domains. Consider the two bubble-shaped nuclei indicated
by arrows in panel (b) which were born in close proximity.
In panel (c), they have coalesced, forming one rapidly
growing domain which then collides with its neighbor,
leaving a shrinking internal domain [panel (d)]. The
contact of two V2 lines always leads to their reconnection
and a reduction of their total length. The contact of V1 and

FIG. 2. Time series of cz concentration maxima: (a) C �
4.30, (b) C � 4.42, and (c) C � 4.7. Left panels show the
local dynamics at a point in the cells, while the right panels
show the dynamics on the shock lines. Time is in units of
thousands of spiral revolutions. In panels (b) and (c) the
crossings of the cz maxima reflect the passages through the
observation point of V2 or V1 curves, respectively.
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V2 lines leaves one V1 line. This event is accompanied
by a change of sign of the phase shift across the V1 line.

The evolution of the size and shape of the V2 line en-
circling a domain is controlled by the balance of two com-
peting factors: propagation along phase gradient directed
toward spiral cores which results in line growth, and the
tendency of diffusion to eliminate curvature and reduce
the length of defect lines. To investigate the interplay
of these two factors, a series of simulations was carried
out on a system without spiral waves, but with constant
concentrations corresponding to those in the spiral core
imposed along one pair of parallel boundaries. This ef-
fectively creates “spiral core” boundaries emitting trains
of plane waves which collide in the center of the system
to form a straight shock line. In this case, the nucleated
domains have very simple fingerlike shapes, normal to
the shock line, and consist of two straight segments with
approximately semicircular caps (Fig. 3). The domain
growth velocity normal to the core boundaries, y�, varies
with the radius R of the arc of the growing tip as y� �
yp 2 D�R where yp � 0.126 is the velocity of a straight
V2 line parallel to the core boundaries, and D � 0.658.
The linear dependence of y� on 1�R shown in Fig. 3
confirms the effect of mean curvature on the velocity of
V line propagation. Since the width of small domains is
approximately equal to 2R, one can estimate the critical
size that must be exceeded for domain proliferation. One
finds Rc � 5.228, in good agreement with direct measure-
ments from the observation of domains whose shape does
not change with time.

The transition to V2 line-defect turbulence in media
with spiral waves, which occurs around C � 4.3, changes
the character of the local dynamics observed in the bulk
of the medium. As the V2 lines propagate, the associated
loop exchanges result in an effective band merging in the
orbits of local trajectories so that they take the form of
two-banded chaotic trajectories [Fig. 2(b)]. Although the
local trajectories retain their period-4 structure between
two passages of V2 lines, the long-time trajectory cannot
be distinguished from that of two-banded chaos. Thus, the
global transition of the medium to defect-line turbulence
can be characterized locally as intermittent band merging.

FIG. 3. Dependence of the domain propagation velocity, y�,
versus the curvature, 1�R, of the tip for C � 4.30. A typical
finger-shaped V2 domain is shown in the right panel along with
the inscribed circle used to determine R.
1880
As the parameter increases further (C . 4.44) the local
dynamics undergoes prominent changes. It fails to exhibit
a period-4 pattern in the intervals separating line-defect
passages, and consists instead of four-banded orbits whose
bands grow in width with increasing C and merge at
C * 4.7. Together with this permanent band merging,
spontaneous nucleation of V2 bubbles occurs in the bulk.
These chaotic V2 lines are the loci of medium points
where the two chaotic bands of the local orbit shrink and
a thick “period-2” orbit is formed. As C increases, their
width decreases, and for C * 4.8 the V2 lines cease to
exist as well-defined objects.

While the local dynamics changes continuously to four-
and subsequently two-banded chaos, another transition,
mediated by moving V1 lines, takes place. At C � 4.557,
the shock regions, where the local dynamics exhibits one-
banded chaos, begin to spontaneously nucleate bubbles
delineated by V1 lines. As C increases, the newly born
domains begin to proliferate. The qualitative features of
this transition are similar to those of the V2 line turbulence
transition: the dynamics of the V1 lines encircling do-
mains is controlled by the factors discussed above and the
transition can be associated with intermittent band merg-
ing [Fig. 2(c)], leading to one-banded local chaotic orbits.

As the parameter C increases even further, beyond
C $ 5.0, the local trajectories in the bulk of the medium
exhibit complete band merging to one-banded chaos. In
this regime, no defect lines can be identified and further
increase in C does not result in any qualitative changes.
However, spiral waves continue to exist, signaling the
robustness of phase synchronization in this amplitude-
turbulent regime [13].

We now focus on the two onsets of synchroniza-
tion defect-line turbulence. The Vi line density, ri�t� �
�i�t��

p
S, where S is the surface area of the medium and

�i�t� the instantaneous total length of Vi lines, can serve
as an order parameter to characterize these transitions.
Above each transition threshold, and as long as the cor-
responding defect lines continue to exist, the balance be-
tween line growth and destruction results in a statistically
stationary average density ri , while ri�t� fluctuates. Thus
the time series of r2�t� above the first threshold shown
in Fig. 4(a) exhibits high-frequency, low-amplitude fluc-
tuations attributed to the birth and death of nuclei in the
shock regions, as well as large-amplitude oscillations with
a long correlation time. This suggests that the prolifera-
tion of domains and their destruction through coalescence
occurs cooperatively. This is confirmed by the fact that,
for both transitions, the order parameter goes continuously
to zero as C decreases toward the threshold. [In Fig. 4(d)
the r̄1 density does not vanish below threshold because
the contribution from the stationary V1 line shown in
Fig. 1 has not been removed.] The data fall on curves
with power-law forms, ri�C� � �C 2 CVi �bi , the signa-
ture of continuous phase transitions. The critical values
are found to be CV2 � 4.306 and CV1 � 4.557, while the
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FIG. 4. Critical properties of the two defect-line mediated
phase transitions observed. (a) Time series of r2 at C � 4.34
for the configuration shown in Fig. 1 (L � 256, two spirals;
time is in units of thousands of spiral revolutions). (b) Vari-
ation of r̄2 with C (±: L � 256, two spirals; ≤: L � 256, four
spirals; 3: L � 512, two spirals). (c) r̄2 versus C for an in-
homogeneous system without spiral waves, L � 256. (d) Same
as (b) but for the V1 line transition. The solid lines are power-
law fits.

critical exponents are b2 � 0.25 and b1 � 0.49. Finite-
size effects usually accompany critical point phenomena
as correlation lengths diverge near threshold. Here, the
finite size to consider is the typical size of the cells com-
posing the spiral wave structure. Strictly speaking, r̄1
is not an intensive quantity because line-defect motion
is constrained to occur between the network of shocks
(where they nucleate) and the spiral cores, and this area
varies from one spiral configuration to another. However,
the data in Figs. 4(b) and 4(d) show that r̄i�C� depends
weakly on the cell size.

The two transitions exhibit significantly different scal-
ing properties, a remarkable fact given that the mecha-
nisms at play appear to be the same in both cases. This
difference may arise from the fact that the V1 line transi-
tion takes places when V2 lines still exist in the medium.

The zero-spiral-density limit is singular since the tran-
sitions observed in the medium without spiral waves are
different from those described above. In this case, the
onset of defect-line nucleation occurs at the same criti-
cal values CVi . However, in the absence of large-scale
phase gradients, the entire medium behaves like the shock
regions separating spiral wave cells, defect lines do not
grow, and the increase of ri�C� arises essentially from the
enhanced nucleation rate. This leads to a different form
of the onset of line turbulence [cf. Fig. 4(c) for the behav-
ior of r̄2�C�] characterized by different critical exponents
(b�

1 � 1.22, b
�
2 � 0.53). These values are difficult to es-

timate because of fluctuations in the ji fields not associ-
ated with fully developed V lines. The fact that b

�
1 and
b
�
2 are significantly different from b1 and b2 supports the

conclusion that the character of the transitions is different
in the spiral and spiral-free systems.

To our knowledge, there is no equilibrium equivalent
of these phase transitions, nor were their nonequilibrium
analogs reported previously. The line-defect phase tran-
sitions may constitute a special class of nonequilibrium
critical phenomena since, in this form of spatiotemporal
chaos, it is the dynamics of one-dimensional synchroniza-
tion defects that breaks the global temporal periodicity of
the medium.

The recent results of Park and Lee have confirmed the
existence of many of the qualitative features of the phe-
nomena presented in this Letter [8]. The observations of
synchronization defect lines in both excitable and oscilla-
tory systems demonstrate their independence of any par-
ticular reaction mechanism and one should find them in
any medium with complex local dynamics. For exam-
ple, these lines may exist in the cardiac muscle where
complex-excitable dynamics and spiral waves, necessary
prerequisites for the emergence of synchronization de-
fects, have been established experimentally [14].
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