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Synchronization Defects and Broken Symmetry in Spiral Waves
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Spiral waves are investigated in oscillatory media exhibiting period-doubling bifurcations. In the
period-doubled and chaotic regimes, the rotational symmetry of the spiral wave is broken. The loss
of symmetry takes the form of synchronization defect lines where the phase of the local oscillation
changes by multiples of2p. The internal structure and geometry of these synchronization defects is
studied and a discussion of the possible types of defect lines is presented. [S0031-9007(97)05138-7]
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Spatially distributed oscillatory media may undergo b
furcations where the period of the orbit doubles at alm
every point in the system. In the simple oscillatory regim
(period 1), before such period-doubling bifurcations o
cur, the system may support stable rotationally symme
spiral wave solutions [1]. The dynamics in this regim
is typically described by the complex Ginzburg-Land
(CGL) equation, the generic equation for an oscillato
medium near the Hopf bifurcation point at which oscill
tions appear [2]. Spiral waves are a well-known featu
of this regime where they have been intensively stud
[3]. However, they can also exist in media where the
cal dynamics is complex periodic or chaotic [4–6].
this Letter, we investigate the consequences of peri
doubling bifurcations on the structure and dynamics
spiral waves. We find that the symmetry of the spi
wave is broken by defect lines where the phase of the
cillation changes by multiples of2p , and we study the
nature of these synchronization defect lines.

We consider the dynamics of spatially distribute
systems governed by reaction-diffusion equations of
form

≠csr, td
≠t

­ Rssscsr, tdddd 1 D=2csr, td , (1)

wherecsr, td is a vector of local concentrations,D is the
diffusion coefficient, andRssscsr, tdddd describes the loca
reaction kinetics. While the phenomena we investig
should be observable for any spatially distributed syst
exhibiting period doubling, we have considered cas
where the spatially homogeneous systemÙcstd ­ Rssscstdddd
itself exhibits period-doubling bifurcations. Specificall
the calculations described here were carried out on
Rössler model,Rx ­ 2cy 2 cz , Ry ­ cx 1 Acy , Rz ­
cxcz 2 Ccz 1 B, which is well known to exhibit chaos
arising from a cascade of subharmonic bifurcations.

Spiral waves were initiated as in [5,6], taking advanta
of the cyclic character of the projection of the Röss
attractor on thescx , cyd plane. Various values of the
parameterC in the interval [2.5,6.0] were considered
while the other parameters were fixed atA ­ 0.2 andB ­
0.2. The scaled diffusion coefficient wasDDtysDrd2 ­
0031-9007y98y80(4)y873(4)$15.00
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1.6 3 1022 (Dt ­ 1022) in all calculations. Simulations
were carried out on a disk-shaped domain of rad
255 with no-flux boundary conditions. In the period-
regime, the medium supports a single, stable, one-arm
spiral wave. As the parameterC increases, the loca
dynamics undergoes a period-doubling bifurcation atC ­
Cp ø 3.03. (The spatially homogenous Rössler mod
bifurcates atCp

ode ø 2.83.) In order to quantitatively
characterize this transition, it is convenient to introdu
a local order parameterdczsrd, defined as the difference
between two successive maxima of the time seriesczsr, td.

Figure 1 shows the dependence ofdczsr0d on C calcu-
lated at a typical point at radiusr0 ­ 130, sufficiently far
from both the boundary and the core of the spiral. O
observes a parabolic increase indczsr0d beyond Cp ø
3.03, typical of a supercritical period-doubling bifurca
tion. This behavior is seen at almost every point in t
medium (the structure is difficult to resolve deep in th
core region). Along almost any ray emanating fro
the core, the magnitude ofdczsrd varies asAsrd

p
C 2 Cp

whereAsrd behaves like the amplitude profile of the sp
ral itself, i.e.,Asrd . ra in the core region and is constan
elsewhere except near the boundary.

FIG. 1. Bifurcation diagram, constructed atr0 ­ 130, show-
ing the first period-doubling bifurcation in the medium sup
porting a single spiral wave (diamonds). For comparison,
upper left curve is the bifurcation diagram for a spatially h
mogeneous system.
© 1998 The American Physical Society 873
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Within the period-2 domain, the spiral wave acquire
a global structure different from that in a simple period
medium. Figure 2 shows theczsr, t0d concentration field
at a single time instantt0. The alternation of high and
low czsr, t0d maxima unambiguously demonstrates th
period-2 local temporal dynamics manifests itself in th
formation of a period-doubled spiral wave form with
broken rotational symmetry whose wavelength is twic
that of the original spiral wave in the period-1 medium
The lower panel of Fig. 2 showsczsr, t0d in grey shades
and indicates the curve connecting the spiral core a
the boundary, denoted asV, where sharp changes in the
concentration occur. TheV curve plays a central role in
the organization of the spiral wave, and its character w
be examined below.

The fact that the local dynamics is almost everywhe
period-2 endows the spiral with some unusual feature
unlike a period-1 medium where the concentration
periodic with the period of the spiral rotation, here
after one turn of the spiral, the high and low maxim
interchange, and it is only after two spiral periods th
the concentration field is restored to its initial value
Although the spiral rotates, theV curve is, up to
numerical accuracy, stationary. In the asymptotic regim
after transients depending on the initial condition, th
shape of theV curve takes the form of a straight line

FIG. 2. Spiral wave in a medium with period-2 local dynam
ics atC ­ 3.84. Concentration fieldczsr, t0d is shown as ele-
vation in the upper panel and as grey shades in the lower pa
The solid line depicts theV curve. The arc segment at radiu
r0 ­ 130 along which points were taken to construct Figs. 3–
is also shown.
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segment with a short curved portion lying inside the cor
region. Figure 3 showsdczsud for three values ofC as a
function of the polar angleu along the arc segment that
crosses theV curve. To a very good approximation, the
numerical data show thatdczsr, u, Cd varies like

dczsr , u, Cd . Asrd
p

C 2 Cp

3 tanhfkrsu 2 uVd sC 2 Cpdg , (2)

whereuV is the angular position of theV curve andk

is a numerical factor. TheV curve is thus a localized
object whose width remains approximately constant wi
r and varies like1ysC 2 Cpd. As C approachesCp from
above, the width increases until it becomes comparab
to 2p and the V curve ceases to be a well-defined
object [7].

We now show that theV curve corresponds to a
one-dimensional synchronization defect across which t
phase of oscillation changes by some multiple of2p.
One can always uniquely parametrize an orbit of
period-1 oscillation by a phase variablew [ f0, 2pd and
describe the spatially distributed medium by a phas
field wsr, td. At the center of the spiral lies a point
defect of this field characterized by a topological charg

1
2p

H
=wsr, td ? dl ­ nt [8], where the integral is taken

along a closed curve encircling the defect. There exi
several possible ways to extend the definition of pha
for complex-periodic oscillations [9]. We assume that th
phasefstd of ann-periodic oscillation is a scalar function
of time which increases monotonically by2pn for each
full period of the oscillationTn. For some systems,f
can be defined in terms of an angle variable in a suitab
chosen coordinate frame in phase space. For the Rös
model we use a cylindrical coordinate systemsr, w, zd
with origin at the unstable fixed point of the spatially
homogenous system andz alongcz . The phase variable
f [ f0, 2pnd then takes the formf ­ w 1 2pm where
m is an integer with values from 0 ton 2 1. While w is a
single-valued function of the original dynamical variables
the phasef of a complex-periodic oscillation is not an

FIG. 3. Order parameterdczsud profile across theV curve
along the arc at radiusr0 ­ 130 indicated in the lower panel
of Fig. 2 for three values ofC: Curve a C ­ 3.04, curve b
C ­ 3.10, and curvec C ­ 3.84. Curve c is calculated for
the medium in Fig. 2.
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observable, since a knowledge of the entire local orbit
required in order to calculatem.

The V curve can be viewed as a one-dimension
defect of thefsr, td field. Figure 4 shows twoczstd
concentration time series at nearby spatial points on eit
side of theV curve. The two oscillations are shifted
relative to each other by half a period. For a period
oscillation, this corresponds to a phase shift ofdf ­ 2p.
The necessity for such a phase synchronization slip
a one-armed spiral in a period-doubled medium can
understood from the following argument. Consider
contour integral of the phase gradient=fsr, td taken along
a closed loopG which surrounds the core of the spira
wave. For an arbitrary pointr0 [ G, this loop is just a
path in the medium which starts atr0, described by the
local n-periodic oscillation phasefsr, td, and returns to
the same point with the same oscillation phasefsr, td.
Thus, the integral may take only values2pnk equal to
multiples of the full-period phase increment. Since th
phase field is given byfsr, td ­ wsr, td 1 2pmsr, td, we
findI

=fsr, td ? dl ­
I

=wsr, td ? dl 1 2p
I

=msr, td ? dl .

(3)

Simulations for a one-armed spiral show that, at a
given time t,

H
=wsr, td ? dl ­ 62p , regardless of the

periodicity of the local dynamics [10]. Given that the
full-period phase increment is2p only in the case of
period-1 dynamics withmsr, td ; 0, for period-doubled
dynamics the integration of=msr, td along G must yield
a nonzero contribution to balance (3). Sincemsr, td is
an integer function, its value changes discontinuous
with time and space so that=msr, td is different from
zero only at a single point: the intersection ofG with
the V curve. For a period-2 medium, the addition of
2p phase jump on theV curve and a2p contribution
from integration ofwsr, td yields the necessary full-period
increment of4p .

The nature of the phase jump associated with theV

curve can be understood from the observation of the lo

FIG. 4. Two czstd concentration time series calculated fo
the medium shown in Fig. 2 at pointsr1,3 ­ sr0 ­ 130, uV 6
0.05d on opposite sides of theV curve.
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orbit loop exchange which occurs on the scale of th
V curve width. Figure 5 shows local orbits calculate
at r0 ­ 130 for three angles,u1 ­ uV 2 0.05, u2 ­ uV ,
and u3 ­ uV 1 0.05. [The correspondingczstd time
series for the first and last orbits are shown in Fig. 4, an
dczsud is given in Fig. 3(c).] Consider local orbits on
the arc connecting pointsu1 andu3 (cf. Fig. 2). As one
traverses the arc, the larger, outer loop of the local orb
constantly shrinks while the smaller, inner loop grows
At u ­ uV , both loops merge and then pass each oth
exchanging their positions in phase space. [Compa
Figs. 5(a) and 5(c).] The behavior of thedczsud order
parameter along the arc provides only limited informatio
on the loop exchange. As one sees from Fig. 5, n
only are thecz maximum values of two loops equal
fdczsuVd ­ 0g, but the entire loops coincide in phase
space: at the exchange pointu ­ uV , the local oscillation
is effectively period-1 [6]. Continuity of the medium
requires that the period-1 points form a line extendin
from the core to the boundary: theV curve.

The V curve separates domains that are dynamica
equivalent apart from a phase shift, and it should hav
no net velocity in its normal direction. Outside the cor
region, where theV curve width is small on the scale
of the spiral wavelength, any large-scale curvature w
be eliminated by motion of theV curve. This motion,
induced by the mean curvature and proportional to th
diffusion coefficient, will yield a straightV curve. In
the core region, theV curve width is comparable to the
length scale of other concentration gradients and mo
complicated structure is possible [6].

We now consider more complex local oscillations. A
C ø 4.09, the system undergoes a bifurcation to perio
4 which can be described by an order parameterd2czsrd,
analogous todczsrd, defined as the difference between th
first and third or second and fourthczsr, td maxima within
one full period of the oscillation. This can be generalize
to any period-2k regime. An oscillatory medium with
period-4 local dynamics has two types of synchronizatio
defect lines:V1 and V2 curves with associated phase

FIG. 5. Loop exchange in local orbits as theV curve is
crossed (see text). Data collected on the arc shown in Fig.
(a) u1 ­ uV 2 0.05; (b) u2 ­ uV ; and (c) u3 ­ uV 1 0.05.
Two points corresponding to time instantst1 ­ 10.3 (diamond)
and t2 ­ 19.8 (asterisk) are marked on each trajectory t
highlight the exchange.
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FIG. 6. Synchronization domains delimited byV1 and V2
curves in a medium with period-4 dynamics. The maximum
value of czsrd in one spiral rotation is plotted as grey shade
Apart from boundary effects, roughly four levels are observe
corresponding to the four loops of the local orbit, from loop
(darkest shade) to loop 4 (lightest shade).

jump values of66p and 4p, respectively [11]. These
curves are shown in Fig. 6 forC ­ 4.3.

We may number the loops of the local period-4 cycle
successively according to their positions in phase spa
starting from the innermost loop. Then theV1 curve
corresponds to thes1234

4312d loop exchange altering all four
loops, while the V2 curve is attributed to thes1234

2143d
exchange which involves only rearrangement of loop
inside the period-2 bands. By considering topologic
braid properties of a period-doubled orbit [6], all possibl
loop exchanges can be enumerated. Outside the c
region, we expect that there existk types of V curves
in a period-2k medium.

The argument given above for the value of thH
=fsr, td ? dl integral applies to a period-4 medium

as well. The existence of two types of defect provide
several ways to satisfy condition (3). Thus, a mediu
with a one-armed spiral wave characterized bynt ­ 11
may have oneV1 curve with16p phase shift or bothV1

(26p) andV2 (4p) curves. Configurations where more
than two curves originate in the same spiral core are,
principle, possible. However, they were not observe
starting from the initial conditions considered here.

For higher values ofC, the V curves may evolve in
time leading to spatiotemporal chaotic regimes within th
general spiral structure. The curves separate doma
of near synchronization where the local phasefsr, td
changes continuously but experiences sudden jumps wh
a domain boundary is crossed. A full exploration of th
dynamics ofV curves in this and other parameter regime
remains to be carried out.

Wavelength-doubled spiral waves have been observ
in recent experiments on the Belousov-Zhabotinsky (BZ
reaction in ruthenium-complex monolayers on the surfa
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of a BZ solution [12]. The experimentally observed spira
wave structure with a clearly visibleV curve (cf. Fig. 5 of
Ref. [12]) is identical to that in Fig. 2. Not only is the final
wavelength-doubled spiral wave structure the same, but t
dynamics leading to its formation from an initial period-1
spiral is also the same as that observed in the experime
We have demonstrated that such broken-symmetry spir
waves are necessarily formed when the local dynamics h
period-2 character, as is the case in Ref. [12]. Althoug
our results were obtained for a system possessing a perio
doubling cascade, we believe that the synchronizatio
defect lines are generic features of distributed media e
hibiting complex periodic behavior, independent of the
specific origin of this periodicity. Thus, we expect the
phenomena described in this Letter to be observable in e
citable as well as oscillatory media where such period-n
local dynamics is observed.
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