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Synchronization Defects and Broken Symmetry in Spiral Waves
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Spiral waves are investigated in oscillatory media exhibiting period-doubling bifurcations. In the
period-doubled and chaotic regimes, the rotational symmetry of the spiral wave is broken. The loss
of symmetry takes the form of synchronization defect lines where the phase of the local oscillation
changes by multiples af7. The internal structure and geometry of these synchronization defects is
studied and a discussion of the possible types of defect lines is presented. [S0031-9007(97)05138-7]
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Spatially distributed oscillatory media may undergo bi-1.6 X 1072 (At = 10~2) in all calculations. Simulations
furcations where the period of the orbit doubles at almostvere carried out on a disk-shaped domain of radius
every point in the system. In the simple oscillatory regime255 with no-flux boundary conditions. In the period-1
(period 1), before such period-doubling bifurcations oc-regime, the medium supports a single, stable, one-armed
cur, the system may support stable rotationally symmetrispiral wave. As the parametef increases, the local
spiral wave solutions [1]. The dynamics in this regimedynamics undergoes a period-doubling bifurcation at
is typically described by the complex Ginzburg-LandauC* = 3.03. (The spatially homogenous Rodssler model
(CGL) equation, the generic equation for an oscillatorybifurcates atC, =~ 2.83.) In order to quantitatively
medium near the Hopf bifurcation point at which oscilla- characterize this transition, it is convenient to introduce
tions appear [2]. Spiral waves are a well-known featurea local order paramete¥c,(r), defined as the difference
of this regime where they have been intensively studiedetween two successive maxima of the time setiés 1).

[3]. However, they can also exist in media where the lo- Figure 1 shows the dependenceé&af,(ry) on C calcu-

cal dynamics is complex periodic or chaotic [4—6]. Inlated at a typical point at radiug = 130, sufficiently far
this Letter, we investigate the consequences of periodrom both the boundary and the core of the spiral. One
doubling bifurcations on the structure and dynamics ofobserves a parabolic increase e, (ry) beyond C* =
spiral waves. We find that the symmetry of the spiral3.03, typical of a supercritical period-doubling bifurca-
wave is broken by defect lines where the phase of the odion. This behavior is seen at almost every point in the
cillation changes by multiples df7, and we study the medium (the structure is difficult to resolve deep in the
nature of these synchronization defect lines. core region). Along almost any ray emanating from

We consider the dynamics of spatially distributedthe core, the magnitude éfc,(r) varies asA(r)v/C — C*
systems governed by reaction-diffusion equations of thevhereA(r) behaves like the amplitude profile of the spi-
form ral itself, i.e.,A(r) = r® in the core region and is constant

ac(r. 1) elsewhere except near the boundary.

Jt

wherec(r, 7) is a vector of local concentrationd, is the T T T T T
diffusion coefficient, andR(c(r, 7)) describes the local 8 -I oS¢ I
reaction kinetics. While the phenomena we investigate L2
should be observable for any spatially distributed system 6 F
exhibiting period doubling, we have considered cases
where the spatially homogeneous system = R(c(?))
itself exhibits period-doubling bifurcations. Specifically,
the calculations described here were carried out on the
Rossler modelR, = —c¢, — ¢;, Ry = ¢x + Acy, R, = 2r
cxc; — Cc; + B, which is well known to exhibit chaos B C
arising from a cascade of subharmonic bifurcations. 0 & !
Spiral waves were initiated as in [5,6], taking advantage 3.0 3.4 38
of the cyclic character of the projection of the Rossler

aftractor on the(cx, c,) plane. Various values of the ing the first period-doubling bifurcation in the medium sup-

par_ameterC in the interval [2'5',6'0] were considered, porting a single spiral wave (diamonds). For comparison, the
while the other parameters were fixeddat= 0.2andB = ypper left curve is the bifurcation diagram for a spatially ho-

0.2. The scaled diffusion coefficient wa3Az/(Ar)? = mogeneous system.

= R(c(r, 7)) + DV?e(r,1), (1)

FIG. 1. Bifurcation diagram, constructed af = 130, show-
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Within the period-2 domain, the spiral wave acquiressegment with a short curved portion lying inside the core
a global structure different from that in a simple periodicregion. Figure 3 show8c,(6) for three values o as a
medium. Figure 2 shows the(r, o) concentration field function of the polar angl@ along the arc segment that
at a single time instanfy. The alternation of high and crosses th€) curve. To a very good approximation, the
low c,(r,7) maxima unambiguously demonstrates thatumerical data show thac,(r, 8, C) varies like
period-2 local temporal dynamics manifests itself in the
formation of a period-doubled spiral wave form with ¢ (r,8,C) = A(r)vC — C*
broken rotational symmetry whose wavelength is twice X tanHkr(0 — 60) (C — CH], ()
that of the original spiral wave in the period-1 medium.

The lower panel of Fig. 2 shows;(r. ) in grey shades here 6y, is the angular position of th€ curve andx

and indicates the curve connecting the spiral core angs 3 numerical factor. Thé) curve is thus a localized

the boundary, denoted 43, where sharp changes in the gpject whose width remains approximately constant with

concentration occur. Th@ curve plays a central role in , and varies likel /(C — C*). As C approache€* from

the organization of the spiral wave, and its character willahove, the width increases until it becomes comparable

be examined below. o to 27 and the Q curve ceases to be a well-defined
The fact that the local dynamics is almost everywherq)bject [7].

period-2 endows the spiral with some unusual features: \We now show that theQ) curve corresponds to a

unlike a period-1 medium where the concentration ispne-dimensional synchronization defect across which the

periodic with the period of the spiral rotation, here,phase of oscillation changes by some multiple 26f.

after one turn of the spiral, the high and low maximapne can always uniquely parametrize an orbit of a

interchange, ar_1d it is or_lly after two sp_lral_p_e_rlods thatperiod-1 oscillation by a phase variabte€ [0,27) and

the concentration field is restored to its initial value.describe the spatially distributed medium by a phase

Although the spiral rotates, thé) curve is, up t0 field o(r,7). At the center of the spiral lies a point

numerical accuracy, stationary. In the asymptotic regimegefect of this field characterized by a topological charge
after transients depending on the initial condition, the_L $Vo(r,t) - dl = n, [8], where the integral is taken

shape of the() curve takes the form of a straight line zjong a closed curve encircling the defect. There exist

several possible ways to extend the definition of phase
for complex-periodic oscillations [9]. We assume that the
phaseg (r) of ann-periodic oscillation is a scalar function
of time which increases monotonically Ryrn for each

full period of the oscillationT,,. For some systems)

can be defined in terms of an angle variable in a suitably
chosen coordinate frame in phase space. For the Rossler
model we use a cylindrical coordinate systém ¢, z)
with origin at the unstable fixed point of the spatially
homogenous system andalongc,. The phase variable

¢ € [0,27n) then takes the fornd = ¢ + 27m where

m is an integer with values from O to — 1. While ¢ isa
single-valued function of the original dynamical variables,
the phase¢ of a complex-periodic oscillation is not an

4 | Ocl0) .
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FIG. 2. Spiral wave in a medium with period-2 local dynam-

ics atC = 3.84. Concentration field,(r, zy) is shown as ele- FIG. 3. Order parameteéc,(6) profile across the) curve
vation in the upper panel and as grey shades in the lower panallong the arc at radiugy, = 130 indicated in the lower panel
The solid line depicts th€) curve. The arc segment at radius of Fig. 2 for three values o: Curve a C = 3.04, curve b
ro = 130 along which points were taken to construct Figs. 3—5C = 3.10, and curvec C = 3.84. Curvec is calculated for
is also shown. the medium in Fig. 2.
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observable, since a knowledge of the entire local orbit iorbit loop exchange which occurs on the scale of the
required in order to calculata. Q) curve width. Figure 5 shows local orbits calculated
The ) curve can be viewed as a one-dimensionakt ry = 130 for three anglesf, = 0o — 0.05,6, = 6q,
defect of the¢(r,r) field. Figure 4 shows twa,(r) and 03 = 6 + 0.05. [The correspondinge,(r) time
concentration time series at nearby spatial points on eitheseries for the first and last orbits are shown in Fig. 4, and
side of theQ) curve. The two oscillations are shifted §c,(#) is given in Fig. 3(c).] Consider local orbits on
relative to each other by half a period. For a period-2the arc connecting point, and 65 (cf. Fig. 2). As one
oscillation, this corresponds to a phase shifégf = 277.  traverses the arc, the larger, outer loop of the local orbit
The necessity for such a phase synchronization slip imonstantly shrinks while the smaller, inner loop grows.
a one-armed spiral in a period-doubled medium can bét 8 = 6q, both loops merge and then pass each other
understood from the following argument. Consider aexchanging their positions in phase space. [Compare
contour integral of the phase gradidhp (r, r) taken along  Figs. 5(a) and 5(c).] The behavior of th&,(#) order
a closed loopl” which surrounds the core of the spiral parameter along the arc provides only limited information
wave. For an arbitrary pointy € I', this loop is just a on the loop exchange. As one sees from Fig. 5, not
path in the medium which starts a§, described by the only are thec, maximum values of two loops equal
local n-periodic oscillation phase(r, ), and returns to [8c,(6q) = 0], but the entire loops coincide in phase
the same point with the same oscillation phas@,t:).  space: at the exchange potht= 6, the local oscillation
Thus, the integral may take only valuBsnk equal to is effectively period-1 [6]. Continuity of the medium
multiples of the full-period phase increment. Since therequires that the period-1 points form a line extending
phase field is given by (r,7) = ¢(r,t) + 27m(r,t), we  from the core to the boundary: th& curve.
find The Q curve separates domains that are dynamically
equivalent apart from a phase shift, and it should have
ng¢(l‘,l) dl = 74V€0(1‘,l) ~dl + 27 j{Vm(l‘, 1) - dl.  no net velocity in its normal direction. Outside the core
3) region, where the) curve width is small on the scale
of the spiral wavelength, any large-scale curvature will

Simulations for a one-armed spiral show that, at anyP€ €liminated by motion of thé) curve. This motion,
given timer, ¢ Vo(r,7) - dl = =27, regardless of the induced by the mean curvature and proportional to the

periodicity of the local dynamics [10]. Given that the diffusion coefficient, will yield a straight) curve. In
full-period phase increment @7 only in the case of the core region, th€) curve width is comparable to the
period-1 dynamics withn(r, 1) = 0, for period-doubled length scale of other concentration gradients and more
dynamics the integration om(r, 1) along ' must yield ~Ccomplicated structure is possible [6]. -

a nonzero contribution to balance (3). Sinegr,r) is We now consider more complex Io<_:a| osc_lllatlons. Al
an integer function, its value changes discontinuously- .09, the system undergoes a bifurcation to period
with time and space so thatm(r,r) is different from 4 which can be descrlbed by an order paramatet (r),
zero only at a single point: the intersection bf with a}nalogous.t(ﬁcz(r), defined as the d|fferencg betwge_n the
the O curve. For a period-2 medium, the addition of aflrst and third or second and fourth(r, r) maxima within

27 phase jump on thé) curve and a’277 contribution  ©Ne full period of the oscillation. This can be generalized

e i . 4 .
from integration ofe (r, ¢) yields the necessary full-period to any periodz regime. An oscillatory medium \.N'th.
increment ofdr . period-4 local dynamics has two types of synchronization

The nature of the phase jump associated with he defect lines:Q); and (), curves with associated phase
curve can be understood from the observation of the local

FIG. 5. Loop exchange in local orbits as tl& curve is

10 20 30 40 crossed (see text). Data collected on the arc shown in Fig. 2:
(@) 6, = 0 — 0.05; (b) 8, = 6q; and ()03 = O + 0.05.

FIG. 4. Two c.(r) concentration time series calculated for Two points corresponding to time instants= 10.3 (diamond)

the medium shown in Fig. 2 at points; = (rp = 130,60 * and 7, = 19.8 (asterisk) are marked on each trajectory to

0.05) on opposite sides of th@ curve. highlight the exchange.
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of a BZ solution [12]. The experimentally observed spiral
wave structure with a clearly visibl@ curve (cf. Fig. 5 of

Ref. [12]) is identical to that in Fig. 2. Not only is the final
wavelength-doubled spiral wave structure the same, but the
dynamics leading to its formation from an initial period-1
spiral is also the same as that observed in the experiment.
We have demonstrated that such broken-symmetry spiral
waves are necessarily formed when the local dynamics has
period-2 character, as is the case in Ref. [12]. Although
our results were obtained for a system possessing a period-
doubling cascade, we believe that the synchronization
defect lines are generic features of distributed media ex-
hibiting complex periodic behavior, independent of the
specific origin of this periodicity. Thus, we expect the
phenomena described in this Letter to be observable in ex-
citable as well as oscillatory media where such period-
FIG. 6. Synchronization domains delimited &y, and Q, local dynamics is observed.

curves in a medium with period-4 dynamics. The maximum This work was supported in part by a grant from the

value of c.(r) in one spiral rotation is plotted as grey shades.Natural Sciences and Engineering Research Council of
Apart from boundary effects, roughly four levels are observedCanada We would like to thank M. Golubitsky for

)
i

corresponding to the four loops of the local orbit, from loop 1
(darkest shade) to loop 4 (lightest shade).

discussions on symmetry breaking and period-doubling

bifurcations.

jump values of=67 and 4, respectively [11]. These
curves are shown in Fig. 6 far = 4.3.

We may number the loops of the local period-4 cycles [1]
successively according to their positions in phase space
starting from the innermost loop. Then th@; curve (2]
corresponds to thél333) loop exchange altering all four
loops, while theQ, curve is attributed to the}iii 6]
exchange which involves only rearrangement of loops 4
inside the period-2 bands. By considering topological
braid properties of a period-doubled orbit [6], all possible 5]
loop exchanges can be enumerated. Outside the core
region, we expect that there existtypes of {) curves [6]
in a period2* medium.

The argument given above for the value of the
¢ Vo (r,1) - dl integral applies to a period-4 medium [7]
as well. The existence of two types of defect provides
several ways to satisfy condition (3). Thus, a medium
with a one-armed spiral wave characterizedrpy= +1
may have oné); curve with+67 phase shift or botlf)

(—=67) andQ, (47) curves. Configurations where more [9
than two curves originate in the same spiral core are, in
principle, possible. However, they were not observed
starting from the initial conditions considered here.

For higher values ofC, the ) curves may evolve in [10]
time leading to spatiotemporal chaotic regimes within the
general spiral structure. The curves separate domains
of near synchronization where the local phagér, )
changes continuously but experiences sudden jumps Wh?{]l]
a domain boundary is crossed. A full exploration of the
dynamics ofQ) curves in this and other parameter regimes
remains to be carried out.

Wavelength-doubled spiral waves have been observed
in recent experiments on the Belousov-Zhabotinsky (BZ)12]
reaction in ruthenium-complex monolayers on the surface
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