Slow manifold structure and the emergence of mixed-mode oscillations
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A detailed study of the slow manifold of a model exhibiting mixed-mode oscillations is presented.

A scenario for the emergence of mixed-mode states which does not involve phase locking on a
2-torus is constructed. We show that mixed-modes correspond to the periodic orbits embedded in
the horseshoe-type strange set and demonstrate how transformations of this set determine the
transitions of mixed-mode states into each other. 1897 American Institute of Physics.
[S0021-96087)51931-3

I. INTRODUCTION a series of electrochemical studies Koperal® found that
the mixed-mode oscillations in Farey sequences observed in

Oscillatory behavior exhibited by nonlinear chemical their study are separated by chaotic states which resemble
systems often takes the form of periodic mixed-mode oscilrandom mixtures of the adjacent periodic patterns rather than
lations consisting of. large amplitude oscillations followed by quasiperiodic oscillations densely covering the surface of
by S small amplitude oscillations. The distinctive difference a 2-torus. In a numerical study of a model system K3per
between large and small oscillations allows one to classifffound a parameter domain where both quasiperiodic oscilla-
the mixed-mode oscillatory states by integer pairsS) and  tions lying on a 2-torus and a large-amplitude mixed-mode
assign them the symbdl®. Ordered progressions of such oscillatory state which does not belong to the torus are stable
periodic patterns separated by chaotic oscillations are olsimultaneously. In order to interpret the results of the experi-
served as control parameters are varied. The progressions wfental study in Ref. 7 Ringlanet al1% constructed a family
different mixed-mode forms are known to be Farey se-of two-extremum Z-maps capable of producing Farey se-
quences described by Farey arithmétic. guences in the limiting case when the central segment of the

Since their discovery in the Belousov—ZhabotinskyZ-map is vertical. They have shown that one may obtain
reaction? mixed-mode oscillations have been found in aFarey sequences which are not related to phase locking on a
broad range of chemical and biologitaystems. Their ubig- torus.
uity suggests the possibility of the existence of a common In this paper we present results of investigations of a
dynamical systems theory origin. A number of authdrs model proposed earlier for the qualitative description of the
identified experimentally observed mixed-mode oscillationsmixed-mode oscillations observed in the Belousov—
with periodic motions arising as a result of phase-locking orzhabotinsky reactioh! From the analysis of the transforma-
a 2-torus. This hypothesis was based mainly on the fact thaton of the slow manifold of the model as system parameters
the periodic states on an invariant torus form Farey seare changed we demonstrate the gradual emergence of a
guences as a control parameter runs through the quasipehierseshoe-type strange set in which all the mixed-mode
odic route from period-1 oscillations to chaos. Numericalstates are embedded as periodic orbits. On the basis of this
evidence for the existence of quasiperiodicity and torus osanalysis we construct a three-dimensional phase space pic-
cillations was obtained from studies of model systems whictiure describing the emergence and bifurcations of mixed-
exhibit mixed-mode oscillations? mode states. This scenario does not involve a torus and ap-

However, there are results which show that mixed-modepears to be an alternative to the well-established
oscillations cannot be attributed to the phenomenon of quaguasiperiodic scenario.
siperiodicity in all systems. In a study of electrodissolution In Sec. Il we introduce the model and present a brief
of copper Albahadilyet al.” demonstrated that the mixed- discussion of its attractors and bifurcation structure. Section
mode states emerge in parameter regions different from thos# is devoted to the detailed analysis of the slow manifold
where a torus is stable. The formation of mixed-mode osciland a description of its important properties. We introduce a
lations was observed at a point well beyond the range ofechnique that allows us to construct the slow manifold and
parameters between the secondary Hopf bifurcation and thdemonstrate how it turns into a horseshoe by stretching and
torus break-up bifurcation, where the mixed-mode statefolding. The repulsive flow that defines a particular shape of
should lie according to the hypothesis of quasiperiodicity. Inmixed-mode oscillations is introduced and discussed in some
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detail. In Sec. IV we show that when the slow manifold is . . . . . . .

folded into a horseshoe interacting with the repulsive flow, 5 , , 1
the mixed-mode oscillations arise naturally at the point 0.5 - 2 2 |
where the large-amplitude, period-1 oscillation loses its sta- ) y
bility through a saddle-node bifurcation. The relation of the - 7
phase flow on the horseshoe to the Z-map introduced by 54 | 3 i
Ringlandet al%is discussed. In Sec. V we conclude that the '
existence of the repulsive flow allows one to consider this K T 1
horseshoe as a representative of a distinct subclass of strange 3 | 1 3, 3 -
sets whose periodic windows are organized according to
Farey sequences. i 1
0.2 1

Il. DESCRIPTION OF THE MODEL ! L L L I I L

We consider a three-variable extensonof the 0.34 0.38 ’Y 0.42 0.46

Boissonade—De Kepper modél,
FIG. 1. Bifurcation phase diagrart — steady statéfocus, 2 — period-1,

5(= y(y— x3+ 3,ux), 3 — mixed-mode oscillations. Separating lines correspond to the Hopf bi-
) furcation(dots, transition1%— ! (dashey and crash onto the focisolid).
y=—2uX—-y—z+p, (D) Both steady state and oscillations are stable in subdoméian@ 3.
z=k(X—2).

- . : € (—o,+). This transition can be represented symbolically
Systgm(l) was prlgmally.pr'oposed n Ref. l.l in order to as1%- !, Continuing to traverse domain 3 by decreasing
obtain a qualitative description of transient mixed-mode os-

I ! . . ~~at constantc one observes pruned Farey sequences of peri-
cillations in the Belousov—Zhabotinsky reaction. DependlngOdiC mixed-mode oscillatio?1901—>n1—> 11y_> 1r9_> 1* inter- P
on the values ofx and B, system(1) possesses either one or

. -~ spersed by narrow, yet detectable, spans of chaos. This
thr_ee steady states. The change in the number of Stat'onaf%riodic-chaotic progression ends suddenly in a crash onto
points occurs on the curve

the focus at the point where the line separating zones 1 and 3
B\? (u—1\3 is crossed. At larg& (x=0.54), where the crash bifurcation
(§> :( ) ' 2 curve appears to be tangential to that for e ! transi-

) tion, both bifurcations occur within an extremely narrow pa-
where two steady states coalesce or emerge in a saddle-nodgneter span and one observes hard termination/emergence
bifurcation. Atu=1, =0, where two branches of cun®  f |arge-amplitude periodic oscillations. Another limiting
meet in a cusp point, the pitch-fork bifurcation takes place sse is observed at low (k<0.20) where the crash curve

Note that the parameters and « only rescale the corre- marges with the Hopf bifurcation line. Here the crash occurs
sponding components of the vector field and do not influencg.om pattern1”,n>1 which forms an almost homoclinic

the positions of the nullclines and steady states in phasgonnection to the focus undergoing the Hopf bifurcation.
space. In the following discussion the geometric parameters  aq , varies the appearance of the phase portrait of the

wn and g are fixed (=2.0,5=-0.4) while y and x are  iyed-mode states changes considerably. At large values of
varied. With this choice of. and g system(1) has only one . photh small- and large-amplitude excursions lie almost on
steady state at;=2z;=—1.159705y;=5.398524, which IS he same plane. This type of mixed-mode oscillation, re-
a stable focus in a domain of the parameter plagex]  ferred to type-1 according to classification given in Ref. 8, is
lying to the left of the Hopf bifurcation ling¢see Fig. 1 and  ghown in Figs. 2 and Zb). With a decrease ir the rein-

a saddle-focus othgrwise. As the real characteristic exponei‘gction part of trajectory falls closer to the focus and the
of the steady state is negative everywhere gnej, no sec-  ngle petween the planes of small- and large-amplitude os-
ond order bifurcation is possible at the chosen valueg of jjjations grows. Atk=<0.2 the phase portrait of the oscilla-

andﬁ. N ] tion acquires all of the features characteristic of type-2
Figure 1 shows the partition of they(x) plane into  mived-mode states. Here the large loops are mainly orthogo-
domains of different types of dynamical behavior according5| to the small ones and the reinjection occurs along the

to the results of numerical integration. In domdi a stable one-dimensional stable manifold of the fodsee Figs. @)
focus is the only attractor of the syste). Large amplitude 5. 2d)].

period-1 (1% oscillations with a strong relaxational character

a_t Ia_rgey are found in QOmain 2. Finally, mixed—mpde 0s- IIl. CONSTRUCTION OF THE PHASE FLOW

cillations are observed in the wedge-shaped domain 3. Tran-

sitions from period-1 to mixed-modes take place on an al- The parameter region in which complex periodic and

most flat curve(shown by the dashed line in Fig) vhere  chaotic oscillations are found can be partitioned into subdo-
the trajectory of systenil) performs a small-amplitude ex- mains corresponding to particular periodic mixed-mode
cursion only once on the entire time interval  statesLS and their chaotic mixtures. We shall study the

3
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FIG. 2. Projections of the phase portraits oqz) plane and corresponding
x(t) time series for two periodic mixed-mode statds;h — 2% for
xk=0.5,y=0.35516;(c,d) — 1*? for k=0.2,y=0.471.

mechanisms responsible for the bifurcations of one mixed-
mode state into another by analyzing transformations of the
phase flow on the system’s slow manifold.

The concept of a slow manifold relies on the assumption
that the relaxation of an arbitrary initial condition to the at-
tractor has two characteristic time scales: the trajectory
quickly reaches certain subset of the phase space and the
slowly approaches the attractor within this subset. In the case
of a strongly dissipative system with three dynamical vari-
ables, the slow set is usually represented by a 2D manifold y
which is often folded in the 3D phase space. To avoid com- —
plications arising from nontrivial embedding of the slow
manifold, we choose for its construction the region of lakge
where the slow manifold appears to have a relatively simple
organization.

A. Slow manifold 4
Figure 3a) presents the projection of the phase flow on ¢
the (x,y) plane forx=0.55 andy=0.39. For these param- )

eter values deep within domain’ Zystem(1) is bistable.

Apart from the stable focus, two stationary periodic solutions

exist: a stable, large-amplitude, period-1 limit cy¢kolid

line) and a saddle-type, small-amplitude cytdiashed ling 0

The planar, concentric organization of these cycles around

the focus suggests that the slow manifold containing them is

flat. Trajectories that leave the saddle cyclg-at—«~ and 2

approach stable cycle or focus &t +« lie in the slow

manifold. These trajectories are easy to calculate and one cai

use them for the construction of a Poincaction of the -2 0 2 4 6

slow manifold. We choosB = {x=x; ’_y<yf} ShOWﬂ_ in Figs. FIG. 3. Phase flow on the slow manifol@) Projection of the flow onx,y)

3(@) and 3b) as a surface of section. Intersections of theplane.(b) Mutual positions of the slow manifold and the surface-of-section

transient trajectories witR yield a set of points which, after P in phase spacdc) First return map for the flow initiated oAy

interpolation by a smooth functiom=z(y),** becomes a

continuous zero-order approximatioly={x=x;,y<y;,z

=z(y)} to the Poincareection of the slow manifold. improve the accuracy of the approximation and to construct
Figure 3b) shows a 3D phase portrait of the same tra-the first return magsee Fig. 8)] which quantitatively de-

jectories as in Fig. @), as well asP andA,. The intersec- scribes the phase flow on the slow manifold.

tions of the flow initiated oA, with P can be used both to A complete description of the phase flow on the slow
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. . . . . . . flow in the phase space is very complicated, the flow can be
]Ogld Aﬂ easily determined locally by the property that it separates

i trajectories making large and small loops while approaching
the attractor.

02 r .
B. Birth of the horseshoe

i / / i Figure 5a) shows an expanded view of the flat part of

03

0.1+ 4 the first return mag(y) in Fig. 3(c). The slope of the map is
everywhere positive and, thus, the map is invertible. yAs
L log J Ay] . decreases at constart=0.55, a smooth transformation of
. . . . . 10 the slow manifold takes place, resulting in the loss of invert-
0_12 -10 8 6 4 ability of the map. A fragment of map constructed for
v=0.332241[see Fig. )] demonstrates thaft(y) is not
FIG. 4. Scaling off(y) at the pointy, where tangent is vertical. monotonic and a smooth maximum arises near the stable
limit cycle. At y=0.33224025 the map is tangent to the bi-
sectrix and a new pair of stable and unstable limit cycles
manifold can be obtained from the comparison of the phasemerges on the slow manifo[df. Fig. 5c)]. As the map’s
portrait and the first return map. Consider the example premaximum grows it sharpens and the newborn limit cycle
sented in Figs. @ and 3c). The first return map loses its stability through a cascade of period-doubling bifur-
Yni1=f(y,) intersects the bisectrix in three points which cations. Aty=0.3322392see Fig. &d)] a chaotic attractor
correspond to the stable limit cycley{=—2.5437), the coexists with the period-1 limit cycle and focus. Although
saddle cycle ¥,=4.2998), and the stable focus the entire cascade to chaos occupies very narrow span of
(ys=5.3985). The nearly rectangular shape of the map im#wo first period-doubling bifurcations were resolved. The tri-
plies that the slow manifold comprises areas of strong exparstability of the system breaks down at a certain valuey of
sion (the neighborhood of,=3.9370, where the map is ver- and every trajectory initiated near the maximum of the map
tical) and contraction(horizontal part of the magp In the s attracted to the period-1 limit cycle after a chaotic transient
course of its evolution a trajectory initiated in the vicinity of of varying length.
the saddle cycle executes a number of small-amplitude loops Figure Se) shows a part of the first return map for
around the saddle cycle and then in one turn reaches thg.=0.332239127 where oscillations suddenly crash on the
neighborhood of the stable limit cycle. Whether the trajec-focus. Two important characteristic features of the flow can
tory approaches the limit cycle like trajectory 3 performing be inferred from the map. First, the maximum of the map
small transient loop or like trajectory 4 which makes a largeacquires a cuspoid shape signaling of the formation of a
loop depends on its position relative to a certain boundarhighly compressed fold on the slow manifold. Second, from
trajectory O which can be identified with the poyy on the  the tangency of the map and bisectrix, one can see that the
first return map wherd(y) has a vertical tangent. Analysis stable period-1 limit cycle and the large-amplitude saddle
of f(y) in a small neighborhood of, shows that the trajec- cycle are near the point of coalescence. The annihilation of
tory O is superunstable; i.e., the neighboring trajectories dethis pair in a saddle-node bifurcation gives rise to an inter-
viate from it faster than geometrically. Figure 4 showsmittent chaotic attractor which has the appearance of a thick
log;g Af| versus loggAy|, where Af=f(y)—f(yo) and limit cycle. A decrease in the control parameteleads to
Ay=y—y,, for both left y<y, (lower set of points and the crash of chaotic oscillations onto the focus. Summarizing
right y>y, (upper set branches of the map shown in Fig. the information presented in Figs(&-5(e), one can con-
3(c). One can see that faky sufficiently small,Af(Ay) is  clude that asy changes through the intervgd.39;.], the
characterized by the power lavAf o« (Ay)* where slow manifold transforms from a planar surface into a folded
a~0.022<1. This implies an extreme divergence of trajec-fractal structure with infinitely many leavéSmale’s horse-
tories which is also reflected in the phase portrait. The initiakhoe.
conditions &:,y1,2(y1)),(Xs,Y2,2(Y2)) on P for trajecto- Making use of several auxiliary Poincasections it is
ries 1 and Zsolid lines in Figs. 8 and 3b)] were such that possible to construct a 3D picture of the slow manifold. Fig-
Y1=Yo— 8/2,y,=Yo+ 6/2 where 6=10"'2 As Fig. 3 ure 6 schematically represents the manifold and three of its
shows, the separation between these two trajectories on thédoincaresections at parameters close to the crash bifurca-
return to the surface of section grows byl2 orders of tion. Part of the manifold situated between sectiGnandA
magnitude. In fact, trajectories 3 and 4 constitute anotheis removed to facilitate visualization of its geometry. In sec-
pair with 6=10"1©, tion A one sees a triply-folded curve which corresponds to
The existence of the superunstable trajectory results ithe first structural level of the manifold. Note the difference
the observed dichotomy of trajectories belonging to the slowbetween the two folds of this curve: while the outer fold has
manifold. A 2D manifold intersecting the slow manifold a smooth parabolic shape, the inner fold is a sharp cusp.
along trajectory 0 plays similar separating role in the 3DlIncreasing the resolution consideralllyy ~ 5 orders of
phase space. Although the global structure of this repulsivenagnitudé one would be able to find that the curve is, in

J. Chem. Phys., Vol. 107, No. 8, 22 August 1997

Downloaded 18 Apr 2004 to 137.132.123.76. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Goryachev, Strizhak, and Kapral: Mixed-mode oscillations 2885

-2.538

-2.54

174 |
-1.78 |

-1.78| '1‘7.4 '1.'7 -]1.66 |-1.62

-1.68 1
'172 B T C

-1.76 ¢ 1

-1.76 -1.72 -1.68
-1.64 1

-1.68 1
-1.72 1

-1.76 ¢ .

176 <172 -1.68  -1.64
a4t ]
15 ¢ 1
1.6 F ]
1.7 b 1
-1.8 n_]

1 1 1 1 1 1 1 1 1

-1.8 -1.7 -16 -15 -14

FIG. 5. Transformation of the first return mapsat 0.55 and decreasing:
(@ y=0.39, (b) y=0.332241,(c) y=0.3322399,(d) y=0.3322392,(¢)
y=0.332239127.

FIG. 6. Geometry of the folded slow manifold. The superunstable trajectory
is shown by dot-and-dash line.

fact, a densely compressed fold constituted by seven leaves
of the second structural level, and so on. To describe one
iteration of the manifold stretching and folding we do not
need to consider these higher structural levels. Following the
evolution of points in sectioA under the flow(clockwise in

Fig. 6) one encounters a pleat where the manifold as a whole
begins to fold into an S-shaped forfaectionB) with two
approximately equal parabolic folds. Prominent stretching of
the flow in the plane of the manifold, accompanied by strong
contraction in the orthogonal direction, transforms the mani-
fold into the thin roll composed of seven leaves seen in sec-
tion C. As a result of the extreme inhomogeneity of com-
pression the inner fold acquires sharp cuspoid shape while
the outer one remains smooth and parabolic. As the flow
returns to sectio more contraction along the vertical di-
rection occurs and the second order structure shown in sec-
tion C is not discernible.

IV. MIXED-MODE OSCILLATIONS

In Sec. lll we described two important characteristic fea-
tures of the phase flow of systeth). Firstly, at the param-
eter values in the neighborhood of mixed-mode oscillations,
the slow manifold is folded into a horseshoe-type set with a
fractal, multi-leaved structure. Secondly, the repulsive flow
divides the transient trajectories into two distinct classes. In-
tersection of the repulsive flow and the slow manifold yields
a superunstable trajectory with peculiar dynamical proper-
ties. In the present section we show how mixed-mode states
which correspond to periodic orbits embedded in the horse-
shoe emerge and bifurcate into each other.

A. Emergence of mixed-mode oscillations

Consider a path in they( ) parameter plane which
starts in domain 2 or 2and ends in the region of mixed-
mode oscillations Jsee Fig. 1L As the domain of large-
amplitude period-1 oscillations is traversed towards the
curve corresponding to thi#— ! transition, the modifica-
tions of the slow manifold described in Sec. Ill B take place.
Before the first mixed-mode is formed an important transfor-
mation of the manifold occurs at the point where a cusp-
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- FIG. 8. First return map at the point of th@%—o! transition
(k=0.5, y=0.355403274).

/

Sec. A for parameter values «=0.50,7v,
=0.355403274 vy, at which the transitiorl®—o! occurs.
S As v, is passed, the cusp on the map breaks up and the
maximum acquires normal parabolic shape. At the same time
- the height of the maximum increases tremendously and two

segments with infinite slope appear on its sides.

FIG. 7. Propagation of the slow manifold through the surface of the repul- . o 1
sive flow (hatchedt () y>y, — transversal intersectior(b) y=y, — The analysis of the map shows that the transifi®s o

formation of a tangency(c) y< y. — fold penetrates the surface. occurs simultaneously with annihilation of the large-
amplitude stable and saddle-type limit cycles. At the point of
coalescence they produce structurally unstable limit cycle
shaped fold develops. Inspection of Fig. 6 shows that thevhich is seen on the first return map as a point of tangency
manifold cannot support periodic oscillations with small- with bisectrix. This cycle combines properties of both stable
amplitude loops since its folded part lies on the “large-and unstable limit cycles. Consider a trajectory which de-
amplitude” side of the repulsive flowonly the superun- parts from such cycle at— —«. In the course of evolution it
stable trajectory is shown in Fig).@n order for orbits with  inevitably executes one small-amplitude loop around the fo-
both small- and large-amplitude excursions to exist, the reeus. Upon the completion of this loop the trajectory is rein-
pulsive flow has to intersect the folded part of the horseshogected into the stable part of the neighborhood of the cycle
Figure 7 shows segments of the manifolds cut out by twawhich is eventually approachedtat: + . Thus, first mixed-
orthogonal planes for three consecutive valueg ahd fixed mode statec! is characterized by the orbit homoclinic to the
k. The casey> v, [Fig. 7(a)] corresponds to the generic structurally unstable cycle and, therefore, exists in a param-
transversal position of the manifolds in which the growingeter domain of zero measure. FeK y, a finite number of
fold of the horseshoe lies on one side of the repulsive flowlarge-amplitude loops is executed before a trajectory visits
This case is described by a first return map of the type showthe small loop and successionsrdfmixed-mode states with
in Fig. 5(d). At y=1,, in addition to the transversal inter- rapidly decreasing are observed.
section, a tangency between the two manifolds occurs. The
tangency manifests itself by the formation of a sharp cusp o
the first return mapsee Fig. %)]. For y< 1y, the fold of the
horseshoe penetrates the surface corresponding to the repul- It is possible to establish how a particular mixed-mode
sive flow and drastically increases in size due to the stron@rbit is incorporated in the slow manifold. Figure 9 shows
divergence from the repulsive flow. One also sees in Figthe (x,y) projection of a46" orbit and its embedding in the
7(c) that as a result of this transformation two new superunhorseshoe. As in Fig. 6, the Poincaetions of the manifold
stable orbits(thick solid lines are born on the slow mani- are shown at different levels of resolution of the fine struc-
fold. Taking into consideration the fractal nature of theture. While sectiorA presents the first two structural levels,
horseshoe one could imagine an infinite stack of superurin sectionB only first level is shown in full. Two lines of
stable orbits born in pairs when nested folds of the horseshgghase points parallel to the surface of the repulsive flow and
penetrate the surface of the repulsive flow one by one. separated from it by= +0.5x 10~ 12 are selected in section
The birth of new superunstable orbits is reflected in theA (long dashes The evolution of these points shown in sec-
first return map as well. Figure 8 shows the first return magion B demonstrates the extreme divergence of trajectories
constructed withP as a surface of section as described incaused by the presence of the repulsive flow.

%. Embedding of the mixed-mode orbits
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FIG. 9. Projection of46" orbit onto (x,y) plane and its embedding in the
slow manifold(see discussion in the tgxt

time the trajectory appears to the left of the repulsive flow
surface(point 1 inA). This causes it to execute a small loop
(point 2 on the cusp-shaped tongueBj Next return of the
trajectory into sectiod\ occurs in point 3, separated far from

1. Following the subsequent numbers one sees how the orbit
returns to the large-amplitude band, gradually ascending
leaves of the slow manifold. The same mechanism holds for
all n! states, although escape on the small loop occurs from
different leaves.

The analysis of the reinjection scheme shows that the
horseshodsolid lines in Fig. 9 cannot support mixed-mode
oscillations with more than one small-amplitude loop. In-
deed, regardless of how far to the left one shifts the position
of point 1, first return of a trajectory initiated at 1 into the
surface of sectiorfpoint 3 lies to the right of the repulsive
flow. This situation changes as the cusp-shaped tongue, to
which point 3 belongs, penetrates the surface of the repulsive
flow through the formation of a tangency as described in Sec.
IV A. (Corresponding changes on both sections are shown
by medium-dashed lingsAs soon as a similar tongue of a
higher structural level passes through the surface of the re-
pulsive flow, an opportunity for the existence of the third
small-amplitude loop arises, and so on. Thus, changing po-
sition of the horseshoe relative to the repulsive flow one can
obtain mixed-mode statds® with any desired. andS.

C. Relation to Z-map

At small values ofx, where the bulk of the mixed-mode
domain lies, the surface-of-sectiéhintroduced in Sec. IIl A
becomes unsuitable for the construction of the first return
map due to the strongly bent shape of the corresponding
Poincaresection(see sectiorB in Fig. 9). Instead, one can
use sectiony= const similar to sectior in Fig. 9. Figure
10 presents two examples of the first return map
Xn+1=fz(X,) constructed in the approximation based on the
upper leaf of the horseshoe for parameter values correspond-
ing to 46" (a) and1' (b) mixed-mode states.

As one can see, maps of this type share a number of
common features. The map consists of two branches with
positive slope and an extremely steep, negatively-inclined
segment which joins the branches. At the point correspond-
ing to the superunstable orbit the map has an infinite slope
and can be locally described by an exponent as discussed in
Sec. Il A. Any mixed-mode stateS may be represented on
this map by a periodic trajectory with iterates on the right
branch ands iterates on the left branch. This property of the
map makes it particularly suitable for the illustration of
mixed-mode bifurcations. At parameter values correspond-
ing to the transitiorl®— ! the right branch is tangent to the
bisectrix. As an intermittent channel opens, the trajectory

Orbit 46' consists of a dense, flat band of large-funnels through it and then jumps onto the left branch from
amplitude loops which consecutively shrink in size and awhich it is reinjected onto the branch of large-amplitude
small loop where the trajectory segment is reinjected into théoops and the cycle closes. Asdecreases both branches fall
large-amplitude band. Projecting points in which the orbitrelative to the bisectrix, reflecting the gradual growth of the

intersects planed andB (shown by thick dotson the cor-

number of small-amplitude loops accompanied by a reduc-

responding Poincargections of the horseshoe one can obtairtion in the number of large-amplitude loops.

insight into the mechanism of this reinjection. At a certain

In Ref. 10 Ringlandet al. extensively studied the prop-
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V. CONCLUSIONS

n+1

04 L | We have analyzed in detail a model exhibiting mixed-

mode oscillations. By constructing the model’s slow mani-
i T fold we have shown that mixed-modes correspond to peri-
odic orbits embedded in a horseshoe-type strange set. This
explains why chaotic oscillations are observed in transitions
- T between adjacent periodic states. The organization of the
slow manifold into a horseshoe also accounts for the signa-
tures of chaos in transient trajectories when the attractor is

- f" T periodic.
07 . , , . , , In our model the mixed-mode periodic orbits do not lie
.07 206 05 -0.4 on a 2-torus. Following transformations of the slow manifold
—— from its simple planar organization into a horseshoe, we
078 | 1 ] have also shown that a torus does not exist as an intermediate
| state between period-1 and mixed-mode oscillations. Thus,
i ' b ] our scenario for the emergence of mixed-mode oscillations is
-0.82 1 an alternative to quasiperiodicity.
L i The main distinctive feature of mixed-mode states, the
partition of their orbits into nonoverlapping bands of small-
-0.86 1 | and large-amplitude loops, finds its explanation in the exis-
y r ] tence of the repulsive flow. Intersection of this flow with the
09 i slow manifold yields a complex system of superunstable or-
L *n bits. The position of the slow manifold relative to the repul-
0.9 0.8 -082 -078 sive flow determines whether the formation of small or large
loops of the attractor is favored. As parameters change along
FIG. 10. First return map$,(x) constructed forc=0.4 withy=0.4 as a g path running through the mixed-mode domain, the position
surface-of-sectionfa) y=0.46204, (b) y=0.44. Orbits46' and 1 are ¢ the repulsive flow changes and one observes sequences of
shown with thin solid lines. . 1 1 nsan 1 1 .
mixed-mode states— 1"— 1"(1"— 1*—n-~) with monoto-

nously increasingdecreasing S/L ratio. As the results of

Ringland et al1° suggest, the fact that these sequences are

erties of the two-extremum mag, . 1=2(X,) where described by Farey arithmetic is also a consequence of the
presence of the superunstable orbits. Thus, the existence of

Z(x)=(c+ax)(1—tank(sx)) + (d+bx)(1+tank(sx)). the repulsive flow places this horseshoe into a separate sub-

class of strange sets whose periodic orbits are giveh by

mixed-mode states, and whose windows of periodicity are
At small. vglues of the parametgsrthe map_has a smooth organized into Farey sequences.
shape similar to that of the cubic map. Asncreases, the There exist indications that our scenario may account for
slope of its middle, negatively-inclined segment growsihe mixed-mode oscillations observed in a number of model
steeper while the distance between two map’s extrema van-,nq experimental studies. This appears to be so for all those
ishes. Ass tends to infinity, the Z-map acquires a zig—zag cases in which the mixed-mode periodic states were found to
shape with a vertical middle segment. Ringlegical. have o senarated by chaotic rather then quasiperiodic oscilla-
shown that in the limiting case— the attractors of the ions As Ringlancet al ° pointed out, zig—zag-shaped maps
Z-map form Farey sequences as other map parameters aff, 5 vertical middle segment indicative of a superunstable

varied. They related this property to the existence of a Verti’trajectory were found in many chemical and electrochemical
cal segment since a decreaseileads to a gradual transfor- systems.

mation of Farey sequences into U-sequences. Although the
dynamic origin of such maps was not discussed, a possible
relation of the Z-map to the existence of mixed-mode oscillACKNOWLEDGMENT
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