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A detailed study of the slow manifold of a model exhibiting mixed-mode oscillations is presented.
A scenario for the emergence of mixed-mode states which does not involve phase locking on a
2-torus is constructed. We show that mixed-modes correspond to the periodic orbits embedded in
the horseshoe-type strange set and demonstrate how transformations of this set determine the
transitions of mixed-mode states into each other. ©1997 American Institute of Physics.
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I. INTRODUCTION

Oscillatory behavior exhibited by nonlinear chemic
systems often takes the form of periodic mixed-mode os
lations consisting ofL large amplitude oscillations followed
by S small amplitude oscillations. The distinctive differen
between large and small oscillations allows one to clas
the mixed-mode oscillatory states by integer pairs (L,S) and
assign them the symbolLS. Ordered progressions of suc
periodic patterns separated by chaotic oscillations are
served as control parameters are varied. The progressio
different mixed-mode forms are known to be Farey
quences described by Farey arithmetic.1

Since their discovery in the Belousov–Zhabotins
reaction,2 mixed-mode oscillations have been found in
broad range of chemical and biological3 systems. Their ubiq-
uity suggests the possibility of the existence of a comm
dynamical systems theory origin. A number of authors1,4

identified experimentally observed mixed-mode oscillatio
with periodic motions arising as a result of phase-locking
a 2-torus. This hypothesis was based mainly on the fact
the periodic states on an invariant torus form Farey
quences as a control parameter runs through the quasi
odic route from period-1 oscillations to chaos. Numeric
evidence for the existence of quasiperiodicity and torus
cillations was obtained from studies of model systems wh
exhibit mixed-mode oscillations.5,6

However, there are results which show that mixed-mo
oscillations cannot be attributed to the phenomenon of q
siperiodicity in all systems. In a study of electrodissoluti
of copper Albahadilyet al.7 demonstrated that the mixed
mode states emerge in parameter regions different from th
where a torus is stable. The formation of mixed-mode os
lations was observed at a point well beyond the range
parameters between the secondary Hopf bifurcation and
torus break-up bifurcation, where the mixed-mode sta
should lie according to the hypothesis of quasiperiodicity.
J. Chem. Phys. 107 (8), 22 August 1997 0021-9606/97/107(8)/2
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a series of electrochemical studies Koperet al.8 found that
the mixed-mode oscillations in Farey sequences observe
their study are separated by chaotic states which resem
random mixtures of the adjacent periodic patterns rather t
by quasiperiodic oscillations densely covering the surface
a 2-torus. In a numerical study of a model system Kop9

found a parameter domain where both quasiperiodic osc
tions lying on a 2-torus and a large-amplitude mixed-mo
oscillatory state which does not belong to the torus are sta
simultaneously. In order to interpret the results of the exp
mental study in Ref. 7 Ringlandet al.10 constructed a family
of two-extremum Z-maps capable of producing Farey
quences in the limiting case when the central segment of
Z-map is vertical. They have shown that one may obt
Farey sequences which are not related to phase locking
torus.

In this paper we present results of investigations o
model proposed earlier for the qualitative description of
mixed-mode oscillations observed in the Belouso
Zhabotinsky reaction.11 From the analysis of the transforma
tion of the slow manifold of the model as system paramet
are changed we demonstrate the gradual emergence
horseshoe-type strange set in which all the mixed-m
states are embedded as periodic orbits. On the basis of
analysis we construct a three-dimensional phase space
ture describing the emergence and bifurcations of mix
mode states. This scenario does not involve a torus and
pears to be an alternative to the well-establish
quasiperiodic scenario.

In Sec. II we introduce the model and present a br
discussion of its attractors and bifurcation structure. Sec
III is devoted to the detailed analysis of the slow manifo
and a description of its important properties. We introduc
technique that allows us to construct the slow manifold a
demonstrate how it turns into a horseshoe by stretching
folding. The repulsive flow that defines a particular shape
mixed-mode oscillations is introduced and discussed in so
2881881/9/$10.00 © 1997 American Institute of Physics
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2882 Goryachev, Strizhak, and Kapral: Mixed-mode oscillations
detail. In Sec. IV we show that when the slow manifold
folded into a horseshoe interacting with the repulsive flo
the mixed-mode oscillations arise naturally at the po
where the large-amplitude, period-1 oscillation loses its s
bility through a saddle-node bifurcation. The relation of t
phase flow on the horseshoe to the Z-map introduced
Ringlandet al.10 is discussed. In Sec. V we conclude that t
existence of the repulsive flow allows one to consider t
horseshoe as a representative of a distinct subclass of str
sets whose periodic windows are organized according
Farey sequences.

II. DESCRIPTION OF THE MODEL

We consider a three-variable extension12 of the
Boissonade–De Kepper model,13

ẋ5g~y2x313mx!,

ẏ522mx2y2z1b, ~1!

ż5k~x2z!.

System~1! was originally proposed in Ref. 11 in order t
obtain a qualitative description of transient mixed-mode
cillations in the Belousov–Zhabotinsky reaction. Depend
on the values ofm andb, system~1! possesses either one
three steady states. The change in the number of statio
points occurs on the curve

S b

2 D 2

5S m21

3 D 3

, ~2!

where two steady states coalesce or emerge in a saddle-
bifurcation. Atm51, b50, where two branches of curve~2!
meet in a cusp point, the pitch-fork bifurcation takes pla
Note that the parametersg and k only rescale the corre
sponding components of the vector field and do not influe
the positions of the nullclines and steady states in ph
space. In the following discussion the geometric parame
m and b are fixed (m52.0,b520.4) while g and k are
varied. With this choice ofm andb system~1! has only one
steady state atxf5zf521.159705,yf55.398524, which is
a stable focus in a domain of the parameter plane (g,k)
lying to the left of the Hopf bifurcation line~see Fig. 1!, and
a saddle-focus otherwise. As the real characteristic expo
of the steady state is negative everywhere on (g,k), no sec-
ond order bifurcation is possible at the chosen values om
andb.

Figure 1 shows the partition of the (g,k) plane into
domains of different types of dynamical behavior accord
to the results of numerical integration. In domain 1 a stable
focus is the only attractor of the system~1!. Large amplitude
period-1 (10) oscillations with a strong relaxational charact
at largeg are found in domain 2. Finally, mixed-mode o
cillations are observed in the wedge-shaped domain 3. T
sitions from period-1 to mixed-modes take place on an
most flat curve~shown by the dashed line in Fig. 1! where
the trajectory of system~1! performs a small-amplitude ex
cursion only once on the entire time intervalt
J. Chem. Phys., Vol. 107,
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P (2`,1`). This transition can be represented symbolica
as10↔`1. Continuing to traverse domain 3 by decreasingg
at constantk one observes pruned Farey sequences of p
odic mixed-mode oscillations̀ 1→n1→11→1n→1` inter-
spersed by narrow, yet detectable, spans of chaos.
periodic-chaotic progression ends suddenly in a crash o
the focus at the point where the line separating zones 1 a
is crossed. At largek (k>0.54), where the crash bifurcatio
curve appears to be tangential to that for the10↔`1 transi-
tion, both bifurcations occur within an extremely narrow p
rameter span and one observes hard termination/emerg
of large-amplitude periodic oscillations. Another limitin
case is observed at lowk (k<0.20) where the crash curv
merges with the Hopf bifurcation line. Here the crash occ
from pattern1n,n@1 which forms an almost homoclinic
connection to the focus undergoing the Hopf bifurcation.

As k varies the appearance of the phase portrait of
mixed-mode states changes considerably. At large value
k both small- and large-amplitude excursions lie almost
the same plane. This type of mixed-mode oscillation,
ferred to type-1 according to classification given in Ref. 8
shown in Figs. 2~a! and 2~b!. With a decrease ink the rein-
jection part of trajectory falls closer to the focus and t
angle between the planes of small- and large-amplitude
cillations grows. Atk<0.2 the phase portrait of the oscilla
tion acquires all of the features characteristic of type
mixed-mode states. Here the large loops are mainly ortho
nal to the small ones and the reinjection occurs along
one-dimensional stable manifold of the focus@see Figs. 2~c!
and 2~d!#.

III. CONSTRUCTION OF THE PHASE FLOW

The parameter region in which complex periodic a
chaotic oscillations are found can be partitioned into sub
mains corresponding to particular periodic mixed-mo
statesLS and their chaotic mixtures. We shall study th

FIG. 1. Bifurcation phase diagram: 1 — steady state~focus!, 2 — period-1,
3 — mixed-mode oscillations. Separating lines correspond to the Hopf
furcation~dots!, transition10↔`1 ~dashes!, and crash onto the focus~solid!.
Both steady state and oscillations are stable in subdomains 28 and 38.
No. 8, 22 August 1997

P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ed
th

io
t-
or
th
a
ri
fo
m
w

p

on
-

n

un

c

he
r

ra
uct

w

on

2883Goryachev, Strizhak, and Kapral: Mixed-mode oscillations
mechanisms responsible for the bifurcations of one mix
mode state into another by analyzing transformations of
phase flow on the system’s slow manifold.

The concept of a slow manifold relies on the assumpt
that the relaxation of an arbitrary initial condition to the a
tractor has two characteristic time scales: the traject
quickly reaches certain subset of the phase space and
slowly approaches the attractor within this subset. In the c
of a strongly dissipative system with three dynamical va
ables, the slow set is usually represented by a 2D mani
which is often folded in the 3D phase space. To avoid co
plications arising from nontrivial embedding of the slo
manifold, we choose for its construction the region of largek
where the slow manifold appears to have a relatively sim
organization.

A. Slow manifold

Figure 3~a! presents the projection of the phase flow
the (x,y) plane fork50.55 andg50.39. For these param
eter values deep within domain 28 system~1! is bistable.
Apart from the stable focus, two stationary periodic solutio
exist: a stable, large-amplitude, period-1 limit cycle~solid
line! and a saddle-type, small-amplitude cycle~dashed line!.
The planar, concentric organization of these cycles aro
the focus suggests that the slow manifold containing them
flat. Trajectories that leave the saddle cycle att→2` and
approach stable cycle or focus att→1` lie in the slow
manifold. These trajectories are easy to calculate and one
use them for the construction of a Poincare´ section of the
slow manifold. We chooseP5$x5xf ,y,yf% shown in Figs.
3~a! and 3~b! as a surface of section. Intersections of t
transient trajectories withP yield a set of points which, afte
interpolation by a smooth functionz5z(y),14 becomes a
continuous zero-order approximationA05$x5xf ,y,yf ,z
5z(y)% to the Poincare´ section of the slow manifold.

Figure 3~b! shows a 3D phase portrait of the same t
jectories as in Fig. 3~a!, as well asP andA0. The intersec-
tions of the flow initiated onA0 with P can be used both to

FIG. 2. Projections of the phase portraits on (x,z) plane and corresponding
x(t) time series for two periodic mixed-mode states:~a,b! — 21 for
k50.5,g50.35516;~c,d! — 112 for k50.2,g50.471.
J. Chem. Phys., Vol. 107,
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improve the accuracy of the approximation and to constr
the first return map@see Fig. 3~c!# which quantitatively de-
scribes the phase flow on the slow manifold.

A complete description of the phase flow on the slo

FIG. 3. Phase flow on the slow manifold.~a! Projection of the flow on (x,y)
plane.~b! Mutual positions of the slow manifold and the surface-of-secti
P in phase space.~c! First return map for the flow initiated onA0.
No. 8, 22 August 1997
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2884 Goryachev, Strizhak, and Kapral: Mixed-mode oscillations
manifold can be obtained from the comparison of the ph
portrait and the first return map. Consider the example p
sented in Figs. 3~a! and 3~c!. The first return map
yn115 f (yn) intersects the bisectrix in three points whic
correspond to the stable limit cycle (yc522.5437), the
saddle cycle (ys54.2998), and the stable focu
(yf55.3985). The nearly rectangular shape of the map
plies that the slow manifold comprises areas of strong exp
sion ~the neighborhood ofy053.9370, where the map is ve
tical! and contraction~horizontal part of the map!. In the
course of its evolution a trajectory initiated in the vicinity
the saddle cycle executes a number of small-amplitude lo
around the saddle cycle and then in one turn reaches
neighborhood of the stable limit cycle. Whether the traje
tory approaches the limit cycle like trajectory 3 performi
small transient loop or like trajectory 4 which makes a lar
loop depends on its position relative to a certain bound
trajectory 0 which can be identified with the pointy0 on the
first return map wheref (y) has a vertical tangent. Analysi
of f (y) in a small neighborhood ofy0 shows that the trajec
tory 0 is superunstable; i.e., the neighboring trajectories
viate from it faster than geometrically. Figure 4 show
log10uD f u versus log10uDyu, where D f 5 f (y)2 f (y0) and
Dy5y2y0, for both left y,y0 ~lower set of points! and
right y.y0 ~upper set! branches of the map shown in Fig
3~c!. One can see that forDy sufficiently small,D f (Dy) is
characterized by the power lawD f } (Dy)a where
a'0.022!1. This implies an extreme divergence of traje
tories which is also reflected in the phase portrait. The ini
conditions (xf ,y1 ,z(y1)),(xf ,y2 ,z(y2)) on P for trajecto-
ries 1 and 2@solid lines in Figs. 3~a! and 3~b!# were such that
y15y02d/2, y25y01d/2 where d510212. As Fig. 3
shows, the separation between these two trajectories on
return to the surface of section grows by'12 orders of
magnitude. In fact, trajectories 3 and 4 constitute anot
pair with d510210.

The existence of the superunstable trajectory result
the observed dichotomy of trajectories belonging to the s
manifold. A 2D manifold intersecting the slow manifol
along trajectory 0 plays similar separating role in the
phase space. Although the global structure of this repuls

FIG. 4. Scaling off (y) at the pointy0 where tangent is vertical.
J. Chem. Phys., Vol. 107,
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flow in the phase space is very complicated, the flow can
easily determined locally by the property that it separa
trajectories making large and small loops while approach
the attractor.

B. Birth of the horseshoe

Figure 5~a! shows an expanded view of the flat part
the first return mapf (y) in Fig. 3~c!. The slope of the map is
everywhere positive and, thus, the map is invertible. Asg
decreases at constantk50.55, a smooth transformation o
the slow manifold takes place, resulting in the loss of inve
ability of the map. A fragment of map constructed f
g50.332241@see Fig. 5~b!# demonstrates thatf (y) is not
monotonic and a smooth maximum arises near the st
limit cycle. At g50.33224025 the map is tangent to the b
sectrix and a new pair of stable and unstable limit cyc
emerges on the slow manifold@cf. Fig. 5~c!#. As the map’s
maximum grows it sharpens and the newborn limit cy
loses its stability through a cascade of period-doubling bif
cations. Atg50.3322392@see Fig. 5~d!# a chaotic attractor
coexists with the period-1 limit cycle and focus. Althoug
the entire cascade to chaos occupies very narrow span og,
two first period-doubling bifurcations were resolved. The t
stability of the system breaks down at a certain value og
and every trajectory initiated near the maximum of the m
is attracted to the period-1 limit cycle after a chaotic transi
of varying length.

Figure 5~e! shows a part of the first return map fo
gc50.332239127 where oscillations suddenly crash on
focus. Two important characteristic features of the flow c
be inferred from the map. First, the maximum of the m
acquires a cuspoid shape signaling of the formation o
highly compressed fold on the slow manifold. Second, fro
the tangency of the map and bisectrix, one can see tha
stable period-1 limit cycle and the large-amplitude sad
cycle are near the point of coalescence. The annihilation
this pair in a saddle-node bifurcation gives rise to an int
mittent chaotic attractor which has the appearance of a th
limit cycle. A decrease in the control parameterg leads to
the crash of chaotic oscillations onto the focus. Summariz
the information presented in Figs. 5~a!–5~e!, one can con-
clude that asg changes through the interval@0.39,gc#, the
slow manifold transforms from a planar surface into a fold
fractal structure with infinitely many leaves~Smale’s horse-
shoe!.

Making use of several auxiliary Poincare´ sections it is
possible to construct a 3D picture of the slow manifold. F
ure 6 schematically represents the manifold and three o
Poincare´ sections at parameters close to the crash bifur
tion. Part of the manifold situated between sectionsC andA
is removed to facilitate visualization of its geometry. In se
tion A one sees a triply-folded curve which corresponds
the first structural level of the manifold. Note the differen
between the two folds of this curve: while the outer fold h
a smooth parabolic shape, the inner fold is a sharp cu
Increasing the resolution considerably~by ' 5 orders of
magnitude! one would be able to find that the curve is,
No. 8, 22 August 1997
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2885Goryachev, Strizhak, and Kapral: Mixed-mode oscillations
FIG. 5. Transformation of the first return map atk50.55 and decreasingg:
~a! g50.39, ~b! g50.332241,~c! g50.3322399,~d! g50.3322392,~e!
g50.332239127.
J. Chem. Phys., Vol. 107,
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fact, a densely compressed fold constituted by seven lea
of the second structural level, and so on. To describe
iteration of the manifold stretching and folding we do n
need to consider these higher structural levels. Following
evolution of points in sectionA under the flow~clockwise in
Fig. 6! one encounters a pleat where the manifold as a wh
begins to fold into an S-shaped form~sectionB) with two
approximately equal parabolic folds. Prominent stretching
the flow in the plane of the manifold, accompanied by stro
contraction in the orthogonal direction, transforms the ma
fold into the thin roll composed of seven leaves seen in s
tion C. As a result of the extreme inhomogeneity of com
pression the inner fold acquires sharp cuspoid shape w
the outer one remains smooth and parabolic. As the fl
returns to sectionA more contraction along the vertical d
rection occurs and the second order structure shown in
tion C is not discernible.

IV. MIXED-MODE OSCILLATIONS

In Sec. III we described two important characteristic fe
tures of the phase flow of system~1!. Firstly, at the param-
eter values in the neighborhood of mixed-mode oscillatio
the slow manifold is folded into a horseshoe-type set wit
fractal, multi-leaved structure. Secondly, the repulsive fl
divides the transient trajectories into two distinct classes.
tersection of the repulsive flow and the slow manifold yiel
a superunstable trajectory with peculiar dynamical prop
ties. In the present section we show how mixed-mode st
which correspond to periodic orbits embedded in the hor
shoe emerge and bifurcate into each other.

A. Emergence of mixed-mode oscillations

Consider a path in the (g,k) parameter plane which
starts in domain 2 or 28 and ends in the region of mixed
mode oscillations 3~see Fig. 1!. As the domain of large-
amplitude period-1 oscillations is traversed towards
curve corresponding to the10↔`1 transition, the modifica-
tions of the slow manifold described in Sec. III B take plac
Before the first mixed-mode is formed an important transf
mation of the manifold occurs at the point where a cu

FIG. 6. Geometry of the folded slow manifold. The superunstable trajec
is shown by dot-and-dash line.
No. 8, 22 August 1997
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2886 Goryachev, Strizhak, and Kapral: Mixed-mode oscillations
shaped fold develops. Inspection of Fig. 6 shows that
manifold cannot support periodic oscillations with sma
amplitude loops since its folded part lies on the ‘‘larg
amplitude’’ side of the repulsive flow~only the superun-
stable trajectory is shown in Fig. 6!. In order for orbits with
both small- and large-amplitude excursions to exist, the
pulsive flow has to intersect the folded part of the horsesh

Figure 7 shows segments of the manifolds cut out by t
orthogonal planes for three consecutive values ofg and fixed
k. The caseg.gc @Fig. 7~a!# corresponds to the gener
transversal position of the manifolds in which the growi
fold of the horseshoe lies on one side of the repulsive flo
This case is described by a first return map of the type sh
in Fig. 5~d!. At g5gc , in addition to the transversal inter
section, a tangency between the two manifolds occurs.
tangency manifests itself by the formation of a sharp cusp
the first return map@see Fig. 5~e!#. For g,gc the fold of the
horseshoe penetrates the surface corresponding to the r
sive flow and drastically increases in size due to the str
divergence from the repulsive flow. One also sees in F
7~c! that as a result of this transformation two new super
stable orbits~thick solid lines! are born on the slow mani
fold. Taking into consideration the fractal nature of t
horseshoe one could imagine an infinite stack of supe
stable orbits born in pairs when nested folds of the horses
penetrate the surface of the repulsive flow one by one.

The birth of new superunstable orbits is reflected in
first return map as well. Figure 8 shows the first return m
constructed withP as a surface of section as described

FIG. 7. Propagation of the slow manifold through the surface of the re
sive flow ~hatched!: ~a! g.gc — transversal intersection;~b! g5gc —
formation of a tangency;~c! g,gc — fold penetrates the surface.
J. Chem. Phys., Vol. 107,

Downloaded 18 Apr 2004 to 137.132.123.76. Redistribution subject to AI
e

-
e.
o

.
n

e
n

ul-
g
.
-

n-
oe

e
p

Sec. III A for parameter values k50.50,g0

50.355403274,gc at which the transition10↔`1 occurs.
As gc is passed, the cusp on the map breaks up and
maximum acquires normal parabolic shape. At the same t
the height of the maximum increases tremendously and
segments with infinite slope appear on its sides.

The analysis of the map shows that the transition10↔`1

occurs simultaneously with annihilation of the larg
amplitude stable and saddle-type limit cycles. At the point
coalescence they produce structurally unstable limit cy
which is seen on the first return map as a point of tange
with bisectrix. This cycle combines properties of both sta
and unstable limit cycles. Consider a trajectory which d
parts from such cycle att→2`. In the course of evolution it
inevitably executes one small-amplitude loop around the
cus. Upon the completion of this loop the trajectory is re
jected into the stable part of the neighborhood of the cy
which is eventually approached att→1`. Thus, first mixed-
mode statè 1 is characterized by the orbit homoclinic to th
structurally unstable cycle and, therefore, exists in a par
eter domain of zero measure. Forg,g0 a finite number of
large-amplitude loops is executed before a trajectory vi
the small loop and successions ofn1 mixed-mode states with
rapidly decreasingn are observed.

B. Embedding of the mixed-mode orbits

It is possible to establish how a particular mixed-mo
orbit is incorporated in the slow manifold. Figure 9 show
the (x,y) projection of a461 orbit and its embedding in the
horseshoe. As in Fig. 6, the Poincare´ sections of the manifold
are shown at different levels of resolution of the fine stru
ture. While sectionA presents the first two structural level
in sectionB only first level is shown in full. Two lines of
phase points parallel to the surface of the repulsive flow
separated from it byd560.5310212 are selected in section
A ~long dashes!. The evolution of these points shown in se
tion B demonstrates the extreme divergence of trajecto
caused by the presence of the repulsive flow.

l-

FIG. 8. First return map at the point of the10↔`1 transition
(k50.5, g50.355403274).
No. 8, 22 August 1997
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2887Goryachev, Strizhak, and Kapral: Mixed-mode oscillations
Orbit 461 consists of a dense, flat band of larg
amplitude loops which consecutively shrink in size and
small loop where the trajectory segment is reinjected into
large-amplitude band. Projecting points in which the or
intersects planesA andB ~shown by thick dots! on the cor-
responding Poincare´ sections of the horseshoe one can obt
insight into the mechanism of this reinjection. At a certa

FIG. 9. Projection of461 orbit onto (x,y) plane and its embedding in th
slow manifold~see discussion in the text!.
J. Chem. Phys., Vol. 107,
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a
e
t

n

time the trajectory appears to the left of the repulsive fl
surface~point 1 inA). This causes it to execute a small loo
~point 2 on the cusp-shaped tongue inB). Next return of the
trajectory into sectionA occurs in point 3, separated far from
1. Following the subsequent numbers one sees how the
returns to the large-amplitude band, gradually ascend
leaves of the slow manifold. The same mechanism holds
all n1 states, although escape on the small loop occurs f
different leaves.

The analysis of the reinjection scheme shows that
horseshoe~solid lines in Fig. 9! cannot support mixed-mod
oscillations with more than one small-amplitude loop. I
deed, regardless of how far to the left one shifts the posit
of point 1, first return of a trajectory initiated at 1 into th
surface of section~point 3! lies to the right of the repulsive
flow. This situation changes as the cusp-shaped tongue
which point 3 belongs, penetrates the surface of the repul
flow through the formation of a tangency as described in S
IV A. ~Corresponding changes on both sections are sh
by medium-dashed lines.! As soon as a similar tongue of
higher structural level passes through the surface of the
pulsive flow, an opportunity for the existence of the thi
small-amplitude loop arises, and so on. Thus, changing
sition of the horseshoe relative to the repulsive flow one
obtain mixed-mode statesLS with any desiredL andS.

C. Relation to Z-map

At small values ofk, where the bulk of the mixed-mod
domain lies, the surface-of-sectionP introduced in Sec. III A
becomes unsuitable for the construction of the first ret
map due to the strongly bent shape of the correspond
Poincare´ section~see sectionB in Fig. 9!. Instead, one can
use sectionsy5 const similar to sectionA in Fig. 9. Figure
10 presents two examples of the first return m
xn115 f Z(xn) constructed in the approximation based on t
upper leaf of the horseshoe for parameter values corresp
ing to 461 ~a! and11 ~b! mixed-mode states.

As one can see, maps of this type share a numbe
common features. The map consists of two branches w
positive slope and an extremely steep, negatively-inclin
segment which joins the branches. At the point correspo
ing to the superunstable orbit the map has an infinite sl
and can be locally described by an exponent as discusse
Sec. III A. Any mixed-mode stateLS may be represented o
this map by a periodic trajectory withL iterates on the right
branch andS iterates on the left branch. This property of th
map makes it particularly suitable for the illustration
mixed-mode bifurcations. At parameter values correspo
ing to the transition10↔`1 the right branch is tangent to th
bisectrix. As an intermittent channel opens, the traject
funnels through it and then jumps onto the left branch fro
which it is reinjected onto the branch of large-amplitu
loops and the cycle closes. Asg decreases both branches fa
relative to the bisectrix, reflecting the gradual growth of t
number of small-amplitude loops accompanied by a red
tion in the number of large-amplitude loops.

In Ref. 10 Ringlandet al. extensively studied the prop
No. 8, 22 August 1997
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2888 Goryachev, Strizhak, and Kapral: Mixed-mode oscillations
erties of the two-extremum mapxn115Z(xn) where

Z~x!5~c1ax!~12tanh~sx!!1~d1bx!~11tanh~sx!!.

At small values of the parameters the map has a smoot
shape similar to that of the cubic map. Ass increases, the
slope of its middle, negatively-inclined segment gro
steeper while thex distance between two map’s extrema va
ishes. Ass tends to infinity, the Z-map acquires a zig–z
shape with a vertical middle segment. Ringlandet al. have
shown that in the limiting cases→` the attractors of the
Z-map form Farey sequences as other map parameter
varied. They related this property to the existence of a ve
cal segment since a decrease ins leads to a gradual transfor
mation of Farey sequences into U-sequences. Although
dynamic origin of such maps was not discussed, a poss
relation of the Z-map to the existence of mixed-mode os
lations was inferred.

One can easily see that the Z-map in itss→` limit is
qualitatively similar to the mapf Z(x) constructed in the
present section. In our map the middle segment is alw
vertical due to the presence of the superunstable orbit.
plying results of Ringlandet al. to system~1!, we may as-
sume that the repulsive flow defines not only the shape
mixed-mode orbits with their nonoverlapping bands
small- and large-amplitude loops, but also their property
form Farey sequences.

FIG. 10. First return mapsf Z(x) constructed fork50.4 with y50.4 as a
surface-of-section:~a! g50.46204, ~b! g50.44. Orbits 461 and 11 are
shown with thin solid lines.
J. Chem. Phys., Vol. 107,
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V. CONCLUSIONS

We have analyzed in detail a model exhibiting mixe
mode oscillations. By constructing the model’s slow ma
fold we have shown that mixed-modes correspond to p
odic orbits embedded in a horseshoe-type strange set.
explains why chaotic oscillations are observed in transitio
between adjacent periodic states. The organization of
slow manifold into a horseshoe also accounts for the sig
tures of chaos in transient trajectories when the attracto
periodic.

In our model the mixed-mode periodic orbits do not
on a 2-torus. Following transformations of the slow manifo
from its simple planar organization into a horseshoe,
have also shown that a torus does not exist as an interme
state between period-1 and mixed-mode oscillations. Th
our scenario for the emergence of mixed-mode oscillation
an alternative to quasiperiodicity.

The main distinctive feature of mixed-mode states,
partition of their orbits into nonoverlapping bands of sma
and large-amplitude loops, finds its explanation in the ex
tence of the repulsive flow. Intersection of this flow with th
slow manifold yields a complex system of superunstable
bits. The position of the slow manifold relative to the repu
sive flow determines whether the formation of small or lar
loops of the attractor is favored. As parameters change a
a path running through the mixed-mode domain, the posit
of the repulsive flow changes and one observes sequenc
mixed-mode statesn1→11→1n(1n→11→n1) with monoto-
nously increasing~decreasing! S/L ratio. As the results of
Ringland et al.10 suggest, the fact that these sequences
described by Farey arithmetic is also a consequence of
presence of the superunstable orbits. Thus, the existenc
the repulsive flow places this horseshoe into a separate
class of strange sets whose periodic orbits are given byLS

mixed-mode states, and whose windows of periodicity
organized into Farey sequences.

There exist indications that our scenario may account
the mixed-mode oscillations observed in a number of mo
and experimental studies. This appears to be so for all th
cases in which the mixed-mode periodic states were foun
be separated by chaotic rather then quasiperiodic osc
tions. As Ringlandet al.10 pointed out, zig–zag-shaped map
with a vertical middle segment indicative of a superunsta
trajectory were found in many chemical and electrochem
systems.
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