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Spatial coexistence and competition among species is investigated through a modified Volterra—
Lotka model which takes into account sexual breeding. This allows the population specific growth
rate to depend on the population density. As a result of this modification the degeneracy inherent in
the classical model is eliminated and qualitatively novel regimes are observed, as demonstrated by
parametric analysis of the model. In the case where the corresponding parameters of competing
species do not differ significantly the model can be reduced to a single Ginzburg—Landau type
equation. The spatially distributed model is analyzed both in the absence and in the presence of
noise mimicking inherent fluctuations in birth and death rates. It is shown that noise can
qualitatively change the behavior of the system. Not only does it induce the formation of spatial
patterns, but also switches on endless turbulent-like rearrangement of the system. When initially
unpopulated habitat is occupied by competing species even a very low-intensity noise makes the
final state of the system totally unpredictable and sensitive to any fluctuation499® American
Institute of Physicg.S1054-15006)00101-7

I. INTRODUCTION can maintain the observed stability of spatial patterns. It was
h bl ¢ biological ‘ . qi suggeste?j“7 that species migrate due to self- and cross-
The problem of biological pattern formation and in par- i gjon with the motility being a function ofN; and in-

ECUIr?r o:nsr:'[)tatrlal fpat}te:]r:i?i fo"r1rtneid ?3; I:Vm? ﬁoﬁiur:]at'o\r}srihascreasing in regions of high population density. The formation
€en a matter ot scientific interest 1or a fong tme. vanouS,¢ .o patterns in this case was reported in Ref. 7. Another
mechanisms have been proposed to account for the emer- .
I, . ; approach was worked out by Brittdf,who assumed that

gence and stability of mosaic patterns typical of natural eco-

systems when they cannot be simply attributed to the hetero'rjd'v'duals tend to aggregate and that competition terms in-

geneity of the environment. As one of the explanations Ofvolve nonlocal interactions. Therefore, effective short-range
these phenomena dissipative structures were suggested ‘%cftivation and long-range inhibition essential for dissipative
the well-studied class of predator-prey modeisilthough structure formation were introduced providing pattern stabil-
predation has been shown to play an important role in thdy- Both approaches imply that individuals can move inten-
spatial organization of ecosystems, it is not the sole source dfonally through the habitat, and consequently, diffusion fails
self-emerging inhomogeneity. Another fundamental biologi-{© "epresent their complex motion. This means that the latter
cal interaction, namely competition, acting on all levels ofModels can be applied only to animal species. However, it is
biological organization from individuals to ecosystems,Plants that give the most spectacular examples of spatial pat-
seems to be equally ¢due to its global ubiquityeven more  terns.
responsible for the formation of spatial patterns. In the present paper a modification of the classical model
The standard Volterra—Lotka type model describing(l) is proposed. Instead of assuming nonlinear diffusion and
competition between two species takes the form first intrononlocal interaction effects we concentrate on specification

duced by Gause of the local population dynamics. Section Il is devoted to the
: formulation and parametric analysis of the modified model.
Ny =Ni(k;—apNi—aNo), The replacement of some simplistic assumptions concerning

() species growth by those taking into account sexual breeding
makes the model structurally stable and enriches its dynamic
whereN;, N, are the population densitiels, are the Malthu-  behavior. By reducing the model to a single Ginzburg—
sian coefficients, and;; , a;; (i,j=1,2) are those of intra- Landau type equat.ion for the effective order parameter, t_he
and interspecific competition respectively. To describe ranproblem is shown in Sec. Il to be one of the many multi-
dom migration of individuals in continuous habitats, it is Stable systems abundant in physical sciences. Various conse-
conventiondl to introduce diffusion-like terms into Eqél).  quences from the application of noise mimicking inherent
However, any nonuniform spatial solution of the mog@lis  fluctuations in birth and death rates are presented in Sec. IV.
unstable. This can be understood qualitatively from the in-The most prominent one among them is that noise is respon-
herent principle of competition—"“winner takes all.” sible for initiation and support of spatio-temporal patterns
Significant efforts have been made to find additionalarising in the model. The influence of noise on various dy-
mechanisms, not allowed for by the classical model, whicmamical systems has been studied extensiise, e.g. Refs.

No=Ny(k,—azNy—agN,),
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10 and 11 and references thepjeiHowever, only few suffi- use the individual fertility functiorg(N) = G(N)/N than the
ciently simple problem$mostly with additive noisecan be  Malthusian functionG(N) itself. For the Alle-type popula-
solved exactly. According to Ref. 10, pattern formation in thetion g(N) has the characteristic sigmoid shape. Initially in-
stochastic models remains one of the most complex and urereasing slowlyg(N) grows significantly in the vicinity of
explored domains where very often the only fruitful way to some critical valueN. until it saturates, similar to the case
gain insight is through numerical simulation. The case ofdiscussed earlier. The critical valié, corresponds to the
multiplicative noise in a spatially distributed dynamical sys-population density at which individuals actively aggregate in
tem with multistable potential, being considered in theswamps, schools, flocks, etc.
present paper, evidently belongs to this problem domain and The two types of Malthusian functions mentioned above
to the best of our knowledge has not been yet studied in theover the majority of all cases occurring in nature. Taking
literature in the context of population dynamics models to banto account the dependence of the individual fertility func-
discussed. In Sec. V we touch upon the problem of naturdion on the population densit{ we obtain instead ofl)
selection. It is conventionally believed that its main principle .
can be briefly formulated as “survival of the fittest.” How- N1=N1(91(N1) —aN; =Ny), ,
ever, determining the strongest species is not intuitively qb— Np=N,(go(N,)— Ny —bN,). @
vious because of the numerous parameters that come into
play. Indeed, the role of chance is shown to be significant infThough rigorous analysis of Eq€2) for arbitrary g, and
this situation. In Sec. VI the properties of the modified modeld. is difficult, the character of stationary points of the €t
are compared to those of the classical one. It is inferred thagan be easily derived from a simple geometrical investiga-
noise plays an organizing rather than destabilizing role.  tion of nuliclines intersecting in these points. Isoclines of the
model (2) split into four branches, two of them being the
axesN;=0 andN,=0, and may intersect in many different
Il. COMPETITION OF SEXUALLY BREEDING SPECIES ways. Depending on the type o{N) and the parameters,
One of the basic assumptions of the classical Volterra-the number of singular points varigs from %to 13. Let us first
Lotka type mode() is that of the independence of the popu- Consider the stationary points; =n,, N,=n,, situated in

lation growth rate on the population density. For sexuallythe interior of the positive quadrahl;, N»>0. Linearizing
breeding species such an assumption is valid only at suffEds: (2) in the neighborhood of the chosen point we obtain

ciently high population densities. Otherwise the probabilityfor the eigenvalues:

of mating (i.e. of finding a breeding partnemay drop sig- N1 o= 0.5 — (fiyky +ip /Ko)
nificantly, leading to an effective decrease in an individual '
fertility. Let us consider a population of some species which = J(Rky+ N, /Ky) 2+ 4R0,), ©)

B o e L Wherel,~1(7) & andka (1) b re nclntons of
vidual in a unit time. Then if both sexes are equally pre—the corresponding nuliclines to the ais=0.

. . L From Eq.(3) it is evident that the eigenvalues are always
isnegtn?g g; U\)ﬁl rt))c;pulatlon, the numbi of individuals born real. This result can be easily extended on any competition

model with arbitrary right part&,(N;,N5),F>(N;,N,) pro-
ON=(n-p(N)+k)Nét. viding thatdF 1/dN,,dF,/dN, < 0. Multiplying the eigen-

Assuming the partner search process to be a Poisson o \éalues(3) we obtain the clear classification rule for the in-

the probability of mating becomep(N)=1—exp(—AN). emal stationary points
Then the Malthusian function of the population reads as N\ \,=n;N,(k;/k,—1).
G(N)=N-g(N)=N-(k+n(1—exp(—AN))). For large N
this function tends to its classical scalirgN, but for low N
the sexual breeding contribution is proportional N7, . o
thereby explicitly showing the cooperative nature of sexuaPont Namely it is .
breeding. The mating probability function of this type is of- * a stable node, ik, <k;<0,
ten approximated by the rational functidii(A "1+ N). For *an unstab_le node, k;>kp>0,
simplicity we also use this approach. This form fN) ca sadd_le n t_he other cases..
supposes the mating behavior of individuals to be very T? consider smqular points lying on Fhe border we as-
simple and to a large extent passive. Moreover, because gggmenzzo (the caser, =0 can t_)e trgated in the same y)/ay
netic material, e.g. pollen, can be randomly dispersed b)If_lgenvalues for the cor.rgspondlng linear problem in this case
wind or water mating behavior as such becomes nonexistenta" be calculated explicitly:
Thus, the above Malthusian function probably fits well to the — \;=f,k,,
majority of plants and some simple animals like hydroid Ny=G,(0)—F
polyps. 2=02( 1

Another mating strategy common for animals with a This immediately results in the following criterion. If
well developed tendency to aggregation, is described by tha,>0 andn,=0, a singular point on the border of the posi-
Alle-type population dynamic¥. It is more convenient to tive quadrant is

From this we see that the nature of a singular point is
completely determined by the inclinations of nuliclines in the
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FIG. 1. Partitioning of the parametric space for the magdgl Background  FIG. 2. Phase portrait typical of the tri-stable parameter domain.
intensity reflects the number of stationary stable states: white —1, light grey, ,P,—pure, M—mixed, S, ,S,—saddle states.
—2, dark grey —3.

stable, the mixed one being a saddle point. All the domains

* a stable node, ik; <0, F‘1>~92(0)' mentioned so far are also typical of the classical model with
* an unstable node, K;>0, n;<g>(0), linear nullclines while others are specific only for the model
* a saddle in the other cases. (4). Two stable stationary states exist in the domains 5 and 6,

The classification rules obtained solve in principle thep ¢ ynlike region 4, one of them is mixed. Consequently,
problem of model2) qualitative analysis, since not only for coexistence becomes sensitive to the initial conditions for the
both classes a§(N) mentioned above but also for any cOm- parameters lying in these domains. Finally, in domain 7 both
petition - model  with  arbitrary  right hand  parts pyre states and the mixed one are simultaneously stable. The
F1(N1,N2),F>(N1,N3) anddF;/dN;,0F,/dNy < O itcan  ppase portrait for this case is presented in Fig. 2.
be easily shown that stationary points are the only permitted Special attention should be paid to the cuA@B where
singularities(see the Appendix _ . species coexistence abruptly breaks down. On this curve the
~ From this point onward, we will consider fertility func- staple node corresponding to the coexistence of species an-
tions of the first type only. Substituting functiogy(Ni) in  njhilates with the saddle leading to catastrophic extinction of
the set(2) by their rational approximation in the form gne of the species. The closer such a catastrophe occurs to
ki tki2Ni/(Ni+), after a litle manipulation we obtain  the pointC, the larger the jump undergone by the ecosystem.

for the dimensionless population densitresandn,: The location of the catastrophic cun&CB on the @,b)
_ a1, plane can be derived from the condition that nullclines are
ni=n;| 1+p— _anl_nz), tangent in the point of their intersection:
n1+ aq
4 o
@232 @ 1+p— 181 —an;—n,=0,
n2—n2 1_p_ n2+a _nl_bnz n1+a1
The model(4) incorporates the classical one in the limiting 1—p— azB; —Mi—bn=0 (5)
case whery;,3;—0. Close investigation of4) shows that Npta, 2
for all sensible combinations @f, «; , 8; , continuous varying
" ; i a1 a3,
of the competition parametees and b results in topologi >—a >—b|=1.
cally the same configurations of nullcline intersections and (n1tay) (nz+az)

thus for qualitatively equivalent phase portraits. This enableg is apparently difficult to solve this system rigorously. Let
one to investigate all the generic cases assuming paramet&ys instead examine the character of the solution using pertur-
a,b are variable and the others fixed at some arbitrary valpation technique in the vicinity of the poir@ only. For

ues. Then the partitioning of the(b) parametric plane into  gjmplicity we  consider a  symmetrical  case
domains where the modek) has qualitatively the same , —,, 3.—p4, p=0. Decomposinga,b,n; and n, into
phase portraits is shown in Fig. 1. Region 1 corresponds t3ower series near the poif after a little manipulation we
the only stable stationary state of the model situated in th@ptain from Eqs(5) :

interior of the positive quadrant indicating stable coexistence

of species. This contrasts with domains 2 and 3 where only a=ac+ e?a,+eag,

one species survives for any initial conditions. Following a  b=b.+e2b,+&3bs,

definite analogy to physics, it is convenient to refer to the a=b
stationary states of stable coexistence as “mixed” ones, as- °© ¢’
suming that “pure” states correspond to the presence of only  Placing the origin in thed,b) plane into the poin€ and
one of the species. In the domain 4 both pure states am®tating the axes so th@=a+b—(a.+b.),b=a—b after

a2:b2, a.3:#b3.
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exclusion ofs we obtainb?~&2. Such a behavior is specific a?Bu?
for a bifurcation set of a cusp catastrophe. If we were ableto  U;=Qu;—Nnu,— aui— UpU,+ L
construct an appropriate scalar value reflecting species com-
position(see the next section for this procedure in the vicin- +Au,,
ity of C) and then plot it in the 3-D space against the param- @
etersa andb, we would get a catastrophe manifold of the _ _ ) a2,8u§
model (4). The projection of its bifurcation set on tha,b) U;=QuUp—Nug—au;—UgUx+
plane partitions it into domains as is shown in Fig. 1. Three
cusp catastrophes connected by the curve of fold Ghésk +Au,,
solid line in Fig. 1 project into the point#, B andC. In
each of them three stationary points of the madgimerge.
The neighborhood of is of particular interest. Being locally _ a?B
stable and nontrivialin the sense that densities of both spe- Q=1-(1+2a)n— ——.
cies are far from zenathe state of coexistence becomes sen- (n+a)
sitive to large amplitude perturbations which can lead to the In the vicinity of the cusp point we may take
abrupt extinction of one of the competing species. a=a,+e, Nn=nc+en;+---. In addition we assume the
nonlinearity of nullclines to be local, i.&<<1. Thus, all the
coefficients in thes-series may be further expanded into the
power series ofr. Omitting terms nonlinear ik and « we
obtain from Eqgs(5)

Let us now conglder species co.mpetlng in a contlnu'ou.s, a=1+4aB+e+0(a? 2 as),
large enough but finite, one dimensional habitat, where indi-  _

(n+a)?(uy+n+a)

(N+ @)?(uy+n+a)

where

Ill. SPATIALLY DISTRIBUTED HABITATS

_ 2 .2
viduals are able to migrat@r disperse seegilsandomly. In n=1-2af-el2+0(a" &% as).
this case the model takes the form of a set of reactionSupstituting these expressions into E(R.and solving the
diffusion equations characteristic equation we find the eigenvalues to be:
Ni=—el2+0(a? 8%, ag), N,=—1+0(a%e? ae). Di-
hy=n,| 1+p— @11 —an,—n,|+D;An,, recting axes glong the corresponding eigenyectors one gets a
ny+a; change of variableg=u;—Uu,, v=u;+U,. With these new
p (6) variables the sef7) takes the form:
. azP2
N,=ny| 1—p— —n;—bny | +D,An,, . v3+ 02— qg%v + g2
2 2( Npta, 2 2 v=—v-0v°—(2aB+¢l2)q*+4a°B avri

v°+2v+1—0¢°
where the motility coefficient®,, D, are assumed to be
constant, and the boundary conditions are of the Neumann
type. If natural competition is implied one should expect _ e ) v2q—q3—quv/2 ®)

only small differences between the corresponding parameters q=— 5 q—qu+4ap vaAq,

of rivals, i.e.a=b,p=0,D,;=D,. Otherwise one of the spe-

cies will occupy the whole habitat causing the other to bewhere unessential terms are omitted. The fast stable variable
extinct. Thus, to avoid unnecessary complication of thev can be excluded fron{8) by means of conventional
model (6), D; and D, are considered equaD,=D,=D.  procedure?? Solution ofv =0 gives

+Av,

The parameteD can then be excluded from Eq&) by v=—(el2+2aB)q>.

rescaling of the spatial coordinate. _ _ _ _ _
A|though the set(6) is Comp|ex for ana|ysisy it can be |n' view of this, after some ma.nlpulatlon we obtain the

reduced in some neighborhood of the politin the para- equation for the order parameter fiejdx,t)

metric space to a single equation for the effective system q(q2—1)(e/2— (e/2+2aB8)q?)

order parameter. The idea of this transform may be easily = A+ 4(1=B)a)’=F +Aq, 9
seen from Fig. 2. Ifa and b lie close to the cusp point

inside the tri-stable domain 7, all the nontrivial stationarywhich has the form of the time-dependent Ginzburg—Landau
states are situated in the line which coincides withequation. Stable stationary states of the undistributed model
a-separatrices connecting the saddle points. Since motio#) correspond to the stable phases of the spatially distributed
along this curve composed of separatri@@st shown in Fig. one. In our case the root$; ,= *1 represent stable pure

2) is much slower than toward it, one may expect the probphases,q;=0 corresponds to the mixed phase, stable for
lem to become effectively one dimensional. To avoid com-e>0 and unstable otherwise. Two roaigs= = 1/2\e/a B
plicated computations, we further simplify Eq®) setting represent saddle states merging: atO0.

a=a,=a, B1=B,=B, p=0, a=b. Let n;=n,=n be Multistable systems of this typémostly bistable ongs

the coordinates of the stable mixed state. Then in the variare well studied. It is known that in the general case phases
ablesu;=n;—n, u,=n,—n, measuring deviations af;  cannot coexist — interphase boundaries move along the me-
andn, from the stationary state, Eq®) take the form dium. Thus propagation of the kink-type fronts switching the

CHAOS, Vol. 6, No. 1, 1996

Downloaded-23-0ct-2002-t0-142.150.192.30.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/chaos/chocr.jsp



82 Goryachev, Polezhaev, and Chernavskii: Extinction, turbulence, and unpredictability

IV. COMPETITION IN THE PRESENCE OF NOISE

One of the most prominent predictions of the determin-
istic model is the presence of hysteresis phenomena for pa-
rameters lying inside the multistable domains. Therefore to
determine the stationary state of the system, one should first
define the initial conditions. The direct consequence of hys-
teresis is the phenomenon of metastability. Let us consider
one example. Although the mixed phase is absolutely stable
(for any finite perturbationonly in the region prescribed by
the phase diagraitsee Fig. 4, it preserves linear stability up
to theACB curve. Thus, inside thaCBT domain the mixed
phase remains metastable, and a nucleus of supercritical size
FIG. 3. The shape of the potentia(q) as a function of the parameter is needed to initiate switching of the medium into one of the

pure states. This picture is true, of course, only if fluctuations
are disregarded completely.
medium from one state into the other is characteristic for the  One way to take into account the fluctuations in birth
dynamic behavior of such a system. The convenient way tand death rates is to assume that the species densijtasd
decide on the relative stability of phases is provided by then, at any time and point in the medium undergo uncorrelated

potentialF(q) determined by random pushes. For the order parametéhis gives
dF(a) A, =0x, 1)+ T(x,b), (10)
fla)=— dq

wherea?<1 andé&(x,t) is a random process with vanishing
wheref(q) is the nonlinear function in Eq9). The shape of correlation time and length. For simplicity this is often con-
the potentialF(q) for Eg. (9) is presented in Fig. 3. The sidered to be a Poisson white noise:

conditions for coexistence of phaseand E(x1))=0

F(a)=F(a), 1,j=123 (EGDEX )= a?8(t—t") S(x—X).
(see, e.g., Ref. )4determine the phase balance curves in the

(a,b) parametric plane. They intersect in the triple point . - . ~ :
- - . equation containing the stochastic force terfy) . Since
where F(qy) =F(dz)=F(qs). The phase diagram for the f(q) is a nonlinear function and therefotgq)=1, it is a

mode_l under con5|derat|0_n IS s_chemathglly shqwn in Fig. 4Case of multiplicative internal noise. It was shdWthat in
Coexistence curves terminate in the critical poiAteind B

dJCh a case the influence of noise should be manifested in

where, as 't. IS sho_\/\_/n above, the system catastrophe mamfofwo different ways. First, even very low noise shifts the de-
has cusp singularities.

L i terministic bifurcation maps tending to reduce the hysteresis
The only type of spatial inhomogeneities allowed are b g Y

: . .~ "loops. Second, being multiplicative the noise can change the
structure; formed by domains O.f qmerent phqses, wh|c_h " 3orm of the system potentid (q) sometimes leading to new
2-D medium have a characteristic parquet-like mosaic APhifurcations, which in the absence of noise would be impos-
pearance. Though unstable in the frame of the deterministic.

model (6), these structures can be rather long-living
formationg® and should not be disregarded as biologically
insignificant.

Substituting(10) into Eq. (9) we obtain the Langevin

Further investigations of the model with the applied
noise were carried out numerically. The most convenient and
sensitive way to find noise-induced effects is to run down the
order parameter probability density distributiofPDD)
P(q,t). Let a continuous medium be considered as a shit of
diffusively connected boxes, antq,Aq,t) be the number
of them whereg e (q,9+Aq) at the moment, then

n(g,Aq,t)
NAQ

AD

M P(q,t)= lim
N—s oo

Ag—0

11

S It should be noted that unlike the common definition of
probability density distributionN boxes being diffusively
connected do not constitute an ensemble of statistically inde-
pendent systems. For the completely deterministic case
- (o=0) there exist only three stationary asymptotically stable
o distribution functions:P;(q) = 8(q—q;), i=1,2,3; with any

other functionP(q,t) tending to one of them when-»~. As
FIG. 4. Phase diagram. Bifurcation map is shown in grey for reference. it was stated earlier, inside the multistable domd#g) is a
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1.31

1.30

1.29

1.28

FIG. 6. Numerical simulation data for t&’ andT’ points positions versus
noise intensity,; = «,=0.3,8,=8,=0.6,p=0,a=b.

triple T’ points versus noise intensityg? for a;= a,
=0.3, B1=B,=0.6,a=h.

The most interesting noise-dependent phenomena, how-
ever, take place in those parametric regions where the system
potential F(q) has multiple minima but noise overrides all
the barriers separating thethatched area in Fig.)5Such
regions will be referred to as areas of overbarrier noise. In
their interior hysteresis breaks down, and instead of a set of
stationaryP(q) functions[which are noise-broadened and
noise-shifted analogs &;(q)= 8(g—q;), i=1,2,3] we ob-

) tain a unique but multimodal order parameter probability
FIG. 5. Transformation of the bifurcation map in the presence of néige. density .dlstrl.butlon. I.n this case the shapgRﬂq) provides .
o?<a?, (b) o®>0?. Hatched area is the region of overbarrier noise. Othere)d"a"wtlve information about the positions and relative
designations are the same as in Fig. 1. depths of thd:(q) minima. With the increase Qﬁ'z these
regions grow, and ab'zzo'g they conjugate in the triple
point T’ forming one simply connected domain, which
grows further aiv?>o? (see Fig. 5h

In the spatio-temporal behavior of the system, the mul-
P.(q)—P;(q), i,j=1,2,3, take place on the correspondingtimOda"ty,OfP(q) r_nanifests itself in thg broken spatial sym-
domain boundaries. metry. Being diffusively connected, points of continuous me-

dium are bound to act coherently. Therefore the medium

The application of noise with the intensity*>0 allows o ) . )
the system to escape from shallow potential minima. There§P|'tS into patches of different phases as is demonstrated in

fore the curves on the bifurcation map where the systenll: ig. 7. The be_tter the different peak_s Bq) are r_esolved,
jumps out of noise-destabilized states are no more coincidef?® more notlceab_le the spatw_;ll mhomogen_elty. Qn the
with the ones on which corresponding potential minima dis_boundanes separating the domain of overbarrier noise from
appear altogether. The destabilizing effect of noise makes all

the multistable regions shrink as is shown in Fig. 5a. The -
domainA’'C’'B’'D’ geometrically similar to théACBD one b
also inherits all the physical properties of the latter under a i :‘\;”"h":
completely deterministic description. With the increase of '
noise intensity verticedA’,C',B’ move along the corre-
sponding phase balance curves in such a way that at some
02=a§ they merge with the triple poinfT’ and the
A’'C’'B’'D’ domain disappears completely.

The influence of noise is not restricted to the phase de-
stabilization. As it can be predicted from its multiplicative
nature, noise affects the very shape of the potential, shifting
the positions of its minima and slightly changing their
depths. Therefore the positions of phase balance curves and : . L2
of the triple point are also functions ef’. Figure 6 repre-
sents numerical data showing the positionsGif and the FIG. 7. An example of noise-induced domain structure.

(

multifunction of parametersa and b and transitions
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FIG. 8. Chaotical point trajectory typical of the turbulent dynamics, FIG. 9. Uncertainty of the species competition resuft=10"°. Left curve
o=0.07. Crosses show the positions of noise-shifted “pure” states. — 02=0, right curve —o?=072, .

those where at least one phase remains stable to noise tAbchance. Numerical experiments show that in some special
system can demonstrate purely noise-induced transitionf&S€s it may result in the absolute unpredictability of dynam-
from homogeneous to spatially inhomogeneous multiphasts: _ _ _ o
state. It should be noted that unlike the completely determin- L€t us consider the following scenario. A large, initially
istic case, the spatial structure is not merely a transient staté"Populated continuous habitég.g. ploughed or burnt out

to spatial homogeneity. Noise initiating formation of spatialland is randomly sown by two competing species. One of
structures also stabilizes them in the sense Baf) pre- them, say, the first, breeds fastgr<0), but suffers from
serves its multimodality with time. The actual species densi®Vercrowding more than the otheax b). It is assumed that
ties ny(x,t),n,(x,t), of course, continuously change, being initial spatla_l dlstrlputlon§ of species are We_:ll approxmated
in endless turbulent motion. Domains mainly populated byPY & Gaussian white noise with vanishing |r.1ten311§{< 1
one of the species emerge, grow, and then split into smalldrarameters,b are_chgsen from inside the blstgble domain,
ones or “melt” back into the mixed phase to make room for SO 0ne of the species is doomed to become extinct. The prob-
growing domains of the concurrent species. To be more spéem is which species will win? Ngme_ncal simulations have
cific let us fix an arbitrary poink, and record species den- "evealed the phenomenon of kinetic overshot, when the
sities Ny(Xo,i7), Na(Xe,i7), i=1,N, at equal time inter- faster breeding first species wins although the parameters
vals = . Constructed in such a way the point trajectory will 2ccording to the phase diagram lie deep in the region where
elucidate the overall dynamics of the system, provided that€ Second species is asymptotically stable. Due to this effect
N> 1. An example of chaotic trajectory typical of the turbu- t€ parametric space domain where the first species domi-
lent medium dynamics in the vicinity of the triple point at Nates may enlarge significantly. But what is even more inter-
02:405 is presented in Fig. 8. The trajectory was sampleoeSt'ng is that the very result of competition becomes a ran-

during 3-10° elementary time steps and then smoothed oveflom variable. Differentz realizations of noisy initial
fast small-amplitude oscillations. Note that the trajectoryconditions with the sameri, lead to different results. Pro-

walks freely through the boundaries of the attraction basin¥ided the faster breeding first species outnumbers the second
spending roughly the same time in the vicinity of each sta®n€ everywhere in the habitat during the growth process, it
tionary state. wins. But if the second one is able to form at least one

finger-like nucleus which breaks through, it will occupy the

whole habitat. To characterize the uncertainty of the result of
V. OCCUPATION OF AN INITIALLY UNPOPULATED competition the following measure can be proposed. p;et

HABITAT be the probability that théth species wins, then

Although all the phenomena mentioned so far are typical min(py,p,)

of the model(6), they do not cover the whole range of pos- =12

sible dynamical regimes. In the majority of examples it was maxps,P2)

implied for simplicity that the corresponding coefficients of takes its maximum value 1, if both results are equally prob-
competitors are to a large extent symmetrical. However, in @&ble:p;=p,=1/2, and its minimum value — O, if the result
natural ecosystem the situation may be different, when eacis fully predictable. Distributions o) versus the parameter
species dominates in some features, but falls behind in tha for the caséo=0.5, p=0.1, aiznz 10 % are given in Fig. 9
others. Strengths and weaknesses compensate each othwith each point being calculated from 100 trials. The left
thus, maintaining a stable balance of species. In such a siteurve corresponds to the completely deterministic model dy-
ation one may expect significant complication of the systennamics. Analogous results have been reported eHrlier
behavior. The contradiction of the effects of different param-the classical model as well. The right curve presents the data
eters on the overall fithess of species also enhances the ralath white noise appliedin the same way as it is described
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in Sec. IV). Thougho?=o2,=10"5, the differences are no- by strange phenomena originating from the nullclines linear-
ticeable. It may seem surprising, but noise “helps” the fasteiity. The two models can be compared in the following evo-
breeding species. To account for this effect one should takkitionary aspect. Let us imagine that species coevolve from
into consideration the dependence of the individual fertilitystable coexistence through strengthening of competition to
on the population density at lon; . Leaving only linear and the exclusion of one of them. According to the classical
guadratic terms in Eq$6) we obtain: model the density of that species decreases steadily up to
complete extinction. This process occurs as slowly as param-
eters evolve. However, in the frame of the modified model
extinction catastrophes are possible when the entire ecosys-
tem has no time for relaxation. Such an abrupt extinction has
(12 been reported as a starting event for the whole avalanches of
Thus, for sufficiently lown; and 8,/a,>a,B8,/a,>b qua-  extinction-speciation phenomelfawhich can be considered
dratic terms in the sdftl2) are positive. This makes growing as manifestations of self-organized criticai‘ify_
species extremely sensitive to positive sign fluctuations, with  |n conclusion we wish to stress the organizing role of
larger effect for outnumbering species because of the quaroise in the system dynamics, as it not only induces the
dratic character of the phenomenon. formation of spatial patterns, but also switches on endless
These results demonstrate that for some parametric reurbulent-like rearrangement of the system. Therefore this
gions there exists a domain of initial conditions with nonzeroturbulent condition can be considered as a new, purely noise-
measure in the space of functions bounded in a segment fafiduced, stationary state.
which the model behavior becomes unpredictable and sensi-
tive to even tiny fluctuations.

Ny =(1—B1+p)Ny+(B1/a;—ani—nny+DiAng,

Ny=(1—Ba—p)Ny+(Balay—b)N5—niny+DyAn,.
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sical model merge resulting in a continuum of stationary
poin_ts. Any yector function addeq to the rhs(@) and per-  AppENDIX: THE NONEXISTENCE OF LIMIT CYCLES
turbing the linear shape of nuliclines, no matter how smallj\ cOMPETITION MODELS
the modulo of this perturbation, will inevitably lead to the
complete disappearance of such bifurcation. Thus, any arbi- Theorem 1.Consider a set of equations:
trary small perturbation not preserving linearity of nullclines 53—y vy y=g(x,y); (xy)eG; f,geCYG),
changes qualitative behavior of the model drastically. As the (A1)
classical model is contained in the modé),(6) as a limiting
case aty; ,3;— 0, no additional effort is needed for its analy-
sis. Combining the point4,B,C,D in one pointC* in Fig. f,9,>0 (A2)
1, so that the domains 5, 6, 7 disappear completely, one can .
get the partitioning of theg,b) plane for the model1). everyt\:vher(re] in G h imi les i
Thus, in the frame of the classical model the mixed and any -Fl;rci?f t Aissjr:]gp\tﬁ)e Sa;r;f) ;r:;t ;%Frrif (;nch 0CG
of the pure states are not stable simultaneously under any Then.there should be a poiA= (x* (AB)/) cQ éuch
parameters. The poi@* in the (a,b) plane in which all the that  for v Q <p(A).— q Y | ’ it
domains 1, 2, 3, 4 meet is just the one where the model h E (B?r (B) S x=x'", and  aso (g) poin

. : : . =(x*,y'®) e Q, such that foV (x,y) e Q y<y'*.

merging nullclines. In the spatially distributed analog of the The fimet can be considered as a value parametrizing a
model (1) this point becomes a critical one. Qualitatively itt ‘actorv in the ph | Thus in th pare & 9
can be seen from Fig. 3 where the poi&®B,C,D and T rajectory in the phase plana.§). Thus in the poin
should be combined again into one point. The same result xA=fA=0, XW=<0 (A3)
can be obtained formally from Eq9) by taking the limit and
a;,Bi—0. The reaction term vanishes proportionally €0
and the system can exist only in a spatially homogeneous y"*=g®'<0 for clockwise motion along the cycle,

VI. CONCLUDING REMARKS

where G is a domain in R Let

state. This prohibits the spontaneous emergence of spatial . , 0 lockwi : (A4)
patterns (even noise-inducedin the frame of classical y=g"">0 for counter-clockwise motion.
model?’ From the above discussion the most interesting pheSimilarly in the pointB
nomena evidently take place where inter- and intraspecific . .

y P p y®=g®=0, y®=<0 (A5)

competitions are nearly of the same strengtfb&1). In the
classical model this parameter domain is completely maskednd
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x®=£® >0 for clockwise motion,

x®=f®)<Q for counter-clockwise motion; (A6)
k=f="fx+fy="ff,+gf,;
y=0=g,x+9gyy="fg,+ggy.
From (A3) and (A5) we obtain correspondingly
XA =gt M<0 (A7)
and
y®=1®g ®<o. (A8)

For both possible types of motion along the cy(el) and
(AB6) give

gMi® <. (A9)
Finally, comparing inequalitieéA7)—(A9) we obtain
K(A)y(B)
f)’/(A) ;(B):g(A_)f(B) <0, (A10)

which is a contradiction to the conditig®2). Thus the as-
sumption of the existence of a limit cycle is not true.
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