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Spatial coexistence and competition among species is investigated through a modified Volterra–
Lotka model which takes into account sexual breeding. This allows the population specific growth
rate to depend on the population density. As a result of this modification the degeneracy inherent in
the classical model is eliminated and qualitatively novel regimes are observed, as demonstrated by
parametric analysis of the model. In the case where the corresponding parameters of competing
species do not differ significantly the model can be reduced to a single Ginzburg–Landau type
equation. The spatially distributed model is analyzed both in the absence and in the presence of
noise mimicking inherent fluctuations in birth and death rates. It is shown that noise can
qualitatively change the behavior of the system. Not only does it induce the formation of spatial
patterns, but also switches on endless turbulent-like rearrangement of the system. When initially
unpopulated habitat is occupied by competing species even a very low-intensity noise makes the
final state of the system totally unpredictable and sensitive to any fluctuations. ©1996 American
Institute of Physics.@S1054-1500~96!00101-7#
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I. INTRODUCTION

The problem of biological pattern formation and in pa
ticular of spatial patterns formed by living populations h
been a matter of scientific interest for a long time. Vario
mechanisms have been proposed to account for the e
gence and stability of mosaic patterns typical of natural e
systems when they cannot be simply attributed to the het
geneity of the environment. As one of the explanations
these phenomena dissipative structures were suggeste
the well-studied class of predator-prey models.1,2 Although
predation has been shown to play an important role in
spatial organization of ecosystems, it is not the sole sourc
self-emerging inhomogeneity. Another fundamental biolo
cal interaction, namely competition, acting on all levels
biological organization from individuals to ecosystem
seems to be equally or~due to its global ubiquity! even more
responsible for the formation of spatial patterns.

The standard Volterra–Lotka type model describi
competition between two species takes the form first in
duced by Gause3:

Ṅ15N1~k12a11N12a12N2!,
~1!

Ṅ25N2~k22a21N12a22N2!,

whereN1 , N2 are the population densities,ki are the Malthu-
sian coefficients, andaii , ai j ( i , j51,2) are those of intra-
and interspecific competition respectively. To describe r
dom migration of individuals in continuous habitats, it
conventional4 to introduce diffusion-like terms into Eqs.~1!.
However, any nonuniform spatial solution of the model~1! is
unstable. This can be understood qualitatively from the
herent principle of competition—‘‘winner takes all.’’

Significant efforts have been made to find addition
mechanisms, not allowed for by the classical model, wh
CHAOS 6 (1), 1996 1054-1500/96/6(1)/78/9/$10.0
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can maintain the observed stability of spatial patterns. It wa
suggested5–7 that species migrate due to self- and cross
diffusion with the motility being a function ofNi and in-
creasing in regions of high population density. The formatio
of stable patterns in this case was reported in Ref. 7. Anoth
approach was worked out by Britton,8,9 who assumed that
individuals tend to aggregate and that competition terms in
volve nonlocal interactions. Therefore, effective short-rang
activation and long-range inhibition essential for dissipative
structure formation were introduced providing pattern stabil
ity. Both approaches imply that individuals can move inten
tionally through the habitat, and consequently, diffusion fails
to represent their complex motion. This means that the latt
models can be applied only to animal species. However, it
plants that give the most spectacular examples of spatial pa
terns.

In the present paper a modification of the classical mode
~1! is proposed. Instead of assuming nonlinear diffusion an
nonlocal interaction effects we concentrate on specificatio
of the local population dynamics. Section II is devoted to th
formulation and parametric analysis of the modified mode
The replacement of some simplistic assumptions concernin
species growth by those taking into account sexual breedin
makes the model structurally stable and enriches its dynam
behavior. By reducing the model to a single Ginzburg–
Landau type equation for the effective order parameter, th
problem is shown in Sec. III to be one of the many multi-
stable systems abundant in physical sciences. Various con
quences from the application of noise mimicking inheren
fluctuations in birth and death rates are presented in Sec. I
The most prominent one among them is that noise is respo
sible for initiation and support of spatio-temporal patterns
arising in the model. The influence of noise on various dy
namical systems has been studied extensively~see, e.g. Refs.
780 © 1996 American Institute of Physics
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79Goryachev, Polezhaev, and Chernavskii: Extinction, turbulence, and unpredictability
10 and 11 and references therein!. However, only few suffi-
ciently simple problems~mostly with additive noise! can be
solved exactly. According to Ref. 10, pattern formation in t
stochastic models remains one of the most complex and
explored domains where very often the only fruitful way
gain insight is through numerical simulation. The case
multiplicative noise in a spatially distributed dynamical sy
tem with multistable potential, being considered in t
present paper, evidently belongs to this problem domain
to the best of our knowledge has not been yet studied in
literature in the context of population dynamics models to
discussed. In Sec. V we touch upon the problem of natu
selection. It is conventionally believed that its main princip
can be briefly formulated as ‘‘survival of the fittest.’’ How
ever, determining the strongest species is not intuitively
vious because of the numerous parameters that come
play. Indeed, the role of chance is shown to be significan
this situation. In Sec. VI the properties of the modified mod
are compared to those of the classical one. It is inferred
noise plays an organizing rather than destabilizing role.

II. COMPETITION OF SEXUALLY BREEDING SPECIES

One of the basic assumptions of the classical Volterr
Lotka type model~1! is that of the independence of the pop
lation growth rate on the population density. For sexua
breeding species such an assumption is valid only at su
ciently high population densities. Otherwise the probabil
of mating ~i.e. of finding a breeding partner! may drop sig-
nificantly, leading to an effective decrease in an individu
fertility. Let us consider a population of some species wh
has sexual breeding along with a vegetative one, and letn
be the number of offsprings produced by any female in
vidual in a unit time. Then if both sexes are equally pr
sented in the population, the numberdN of individuals born
in time dt will be

dN5~n•p~N!1k!Ndt.

Assuming the partner search process to be a Poisson
the probability of mating becomesp(N)512exp(2lN).
Then the Malthusian function of the population reads
G(N)5N•g(N)5N•(k1n(12exp(2lN))). For large N
this function tends to its classical scaling;N, but for lowN
the sexual breeding contribution is proportional toN2,
thereby explicitly showing the cooperative nature of sex
breeding. The mating probability function of this type is o
ten approximated by the rational functionN/(l211N). For
simplicity we also use this approach. This form ofp(N)
supposes the mating behavior of individuals to be ve
simple and to a large extent passive. Moreover, because
netic material, e.g. pollen, can be randomly dispersed
wind or water mating behavior as such becomes nonexist
Thus, the above Malthusian function probably fits well to t
majority of plants and some simple animals like hydro
polyps.

Another mating strategy common for animals with
well developed tendency to aggregation, is described by
Alle-type population dynamics.12 It is more convenient to
CHAOS, Vol.
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use the individual fertility functiong(N)5G(N)/N than the
Malthusian functionG(N) itself. For the Alle-type popula-
tion g(N) has the characteristic sigmoid shape. Initially in
creasing slowly,g(N) grows significantly in the vicinity of
some critical valueNc until it saturates, similar to the case
discussed earlier. The critical valueNc corresponds to the
population density at which individuals actively aggregate
swamps, schools, flocks, etc.

The two types of Malthusian functions mentioned abov
cover the majority of all cases occurring in nature. Takin
into account the dependence of the individual fertility func
tion on the population densityN we obtain instead of~1!

Ṅ15N1~g1~N1!2aN12N2!,
~2!

Ṅ25N2~g2~N2!2N12bN2!.

Though rigorous analysis of Eqs.~2! for arbitrary g1 and
g2 is difficult, the character of stationary points of the set~2!
can be easily derived from a simple geometrical investig
tion of nullclines intersecting in these points. Isoclines of th
model ~2! split into four branches, two of them being the
axesN150 andN250, and may intersect in many differen
ways. Depending on the type ofg(N) and the parameters,
the number of singular points varies from 2 to 13. Let us fir
consider the stationary pointsN15ñ1 , N25ñ2 , situated in
the interior of the positive quadrantN1 , N2.0. Linearizing
Eqs. ~2! in the neighborhood of the chosen point we obta
for the eigenvalues:

l1,250.5~2~ ñ1k11ñ2 /k2!

6A~ ñ1k11ñ2 /k2!
214ñ1ñ2!, ~3!

wherek15g18(ñ1)2a andk25g28(ñ2)2b are inclinations of
the corresponding nullclines to the axisN250.

From Eq.~3! it is evident that the eigenvalues are alway
real. This result can be easily extended on any competiti
model with arbitrary right partsF1(N1 ,N2),F2(N1 ,N2) pro-
viding that]F1 /]N2 ,]F2 /]N1 , 0. Multiplying the eigen-
values~3! we obtain the clear classification rule for the in
ternal stationary points

l1l25ñ1ñ2~k1 /k221!.

From this we see that the nature of a singular point
completely determined by the inclinations of nullclines in th
point. Namely it is

• a stable node, ifk1,k2,0,
• an unstable node, ifk1.k2.0,
• a saddle in the other cases.
To consider singular points lying on the border we a

sumeñ250 ~the caseñ150 can be treated in the same way!.
Eigenvalues for the corresponding linear problem in this ca
can be calculated explicitly:

l15ñ1k1 ,

l25g2~0!2ñ1 .

This immediately results in the following criterion. If
ñ1.0 andñ250, a singular point on the border of the posi
tive quadrant is
6, No. 1, 1996

t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/chaos/chocr.jsp



ins
ith
el
6,
ly,
he
th
The

the
an-
of
s to
m.

re

t
tur-

e

in.

80 Goryachev, Polezhaev, and Chernavskii: Extinction, turbulence, and unpredictability
• a stable node, ifk1,0, ñ1.g2(0),
• an unstable node, ifk1.0, ñ1,g2(0),
• a saddle in the other cases.
The classification rules obtained solve in principle t

problem of model~2! qualitative analysis, since not only fo
both classes ofg(N) mentioned above but also for any com
petition model with arbitrary right hand part
F1(N1 ,N2),F2(N1 ,N2) and]F1 /]N2 ,]F2 /]N1 , 0 it can
be easily shown that stationary points are the only permi
singularities~see the Appendix!.

From this point onward, we will consider fertility func
tions of the first type only. Substituting functionsgi(Ni) in
the set ~2! by their rational approximation in the form
ki ,11ki ,2Ni /(Ni1g i), after a little manipulation we obtain
for the dimensionless population densitiesn1 andn2:

ṅ15n1S 11r2
a1b1

n11a1
2an12n2D ,

~4!

ṅ25n2S 12r2
a2b2

n21a2
2n12bn2D .

The model~4! incorporates the classical one in the limitin
case whena i ,b i→0. Close investigation of~4! shows that
for all sensible combinations ofr,a i ,b i , continuous varying
of the competition parametersa and b results in topologi-
cally the same configurations of nullcline intersections a
thus for qualitatively equivalent phase portraits. This enab
one to investigate all the generic cases assuming param
a,b are variable and the others fixed at some arbitrary v
ues. Then the partitioning of the (a,b) parametric plane into
domains where the model~4! has qualitatively the sam
phase portraits is shown in Fig. 1. Region 1 correspond
the only stable stationary state of the model situated in
interior of the positive quadrant indicating stable coexiste
of species. This contrasts with domains 2 and 3 where o
one species survives for any initial conditions. Following
definite analogy to physics, it is convenient to refer to t
stationary states of stable coexistence as ‘‘mixed’’ ones,
suming that ‘‘pure’’ states correspond to the presence of o
one of the species. In the domain 4 both pure states

FIG. 1. Partitioning of the parametric space for the model~4!. Background
intensity reflects the number of stationary stable states: white —1, light
—2, dark grey —3.
CHAOS, Vol.

Downloaded¬23¬Oct¬2002¬to¬142.150.192.30.¬Redistribution¬subje
he
r
-
s

tted

-

g

nd
les
eters
al-

e
s to
the
nce
nly
a
he
as-
nly
are

stable, the mixed one being a saddle point. All the doma
mentioned so far are also typical of the classical model w
linear nullclines while others are specific only for the mod
~4!. Two stable stationary states exist in the domains 5 and
but unlike region 4, one of them is mixed. Consequent
coexistence becomes sensitive to the initial conditions for t
parameters lying in these domains. Finally, in domain 7 bo
pure states and the mixed one are simultaneously stable.
phase portrait for this case is presented in Fig. 2.

Special attention should be paid to the curveACBwhere
species coexistence abruptly breaks down. On this curve
stable node corresponding to the coexistence of species
nihilates with the saddle leading to catastrophic extinction
one of the species. The closer such a catastrophe occur
the pointC, the larger the jump undergone by the ecosyste
The location of the catastrophic curveACB on the (a,b)
plane can be derived from the condition that nullclines a
tangent in the point of their intersection:

11r2
a1b1

n11a1
2an12n250,

12r2
a2b2

n21a2
2n12bn250, ~5!

S a1b1

~n11a1!
2 2aD S a2b2

~n21a2!
2 2bD51.

It is apparently difficult to solve this system rigorously. Le
us instead examine the character of the solution using per
bation technique in the vicinity of the pointC only. For
simplicity we consider a symmetrical cas
a15a2 ,b15b2 ,r50. Decomposinga,b,n1 and n2 into
power series near the pointC after a little manipulation we
obtain from Eqs.~5! :

a5ac1«2a21«3a3 ,

b5bc1«2b21«3b3 ,

ac5bc , a25b2 , a35” b3 .

Placing the origin in the (a,b) plane into the pointC and
rotating the axes so thatã5a1b2(ac1bc),b̃5a2b after

grey
FIG. 2. Phase portrait typical of the tri-stable parameter doma
P1 ,P2—pure,M—mixed,S1 ,S2—saddle states.
6, No. 1, 1996
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81Goryachev, Polezhaev, and Chernavskii: Extinction, turbulence, and unpredictability
exclusion of« we obtainb̃2;ã3. Such a behavior is specifi
for a bifurcation set of a cusp catastrophe. If we were able
construct an appropriate scalar value reflecting species c
position~see the next section for this procedure in the vic
ity of C! and then plot it in the 3-D space against the para
etersa andb, we would get a catastrophe manifold of th
model ~4!. The projection of its bifurcation set on the (a,b)
plane partitions it into domains as is shown in Fig. 1. Th
cusp catastrophes connected by the curve of fold ones~thick
solid line in Fig. 1! project into the pointsA, B andC. In
each of them three stationary points of the model~4! merge.
The neighborhood ofC is of particular interest. Being locally
stable and nontrivial~in the sense that densities of both sp
cies are far from zero! the state of coexistence becomes s
sitive to large amplitude perturbations which can lead to
abrupt extinction of one of the competing species.

III. SPATIALLY DISTRIBUTED HABITATS

Let us now consider species competing in a continuo
large enough but finite, one dimensional habitat, where in
viduals are able to migrate~or disperse seeds! randomly. In
this case the model takes the form of a set of reacti
diffusion equations

ṅ15n1S 11r2
a1b1

n11a1
2an12n2D1D1Dn1 ,

~6!

ṅ25n2S 12r2
a2b2

n21a2
2n12bn2D1D2Dn2 ,

where the motility coefficientsD1 , D2 are assumed to b
constant, and the boundary conditions are of the Neum
type. If natural competition is implied one should expe
only small differences between the corresponding parame
of rivals, i.e.a.b,r.0,D1.D2 . Otherwise one of the spe
cies will occupy the whole habitat causing the other to
extinct. Thus, to avoid unnecessary complication of
model ~6!, D1 andD2 are considered equal:D15D25D.
The parameterD can then be excluded from Eqs.~6! by
rescaling of the spatial coordinate.

Although the set~6! is complex for analysis, it can b
reduced in some neighborhood of the pointC in the para-
metric space to a single equation for the effective sys
order parameter. The idea of this transform may be ea
seen from Fig. 2. Ifa and b lie close to the cusp pointC
inside the tri-stable domain 7, all the nontrivial stationa
states are situated in the line which coincides w
a-separatrices connecting the saddle points. Since mo
along this curve composed of separatrices~not shown in Fig.
2! is much slower than toward it, one may expect the pr
lem to become effectively one dimensional. To avoid co
plicated computations, we further simplify Eqs.~6! setting
a15a25a, b15b25b, r50, a5b. Let n15n25n̄ be
the coordinates of the stable mixed state. Then in the v
ables u15n12n̄, u25n22n̄, measuring deviations ofn1
andn2 from the stationary state, Eqs.~6! take the form
CHAOS, Vol.
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u̇15Qu12n̄u22au1
22u1u21

a2bu1
2

~ n̄1a!2~u11n̄1a!

1Du1 ,
~7!

u̇25Qu22n̄u12au2
22u1u21

a2bu2
2

~ n̄1a!2~u21n̄1a!

1Du2 ,

where

Q512~112a!n̄2
a2b

~ n̄1a!2
.

In the vicinity of the cusp point we may take
a5ac1«, n̄5n̄c1«n̄11•••. In addition we assume the
nonlinearity of nullclines to be local, i.e.a!1. Thus, all the
coefficients in the«-series may be further expanded into the
power series ofa. Omitting terms nonlinear in« anda we
obtain from Eqs.~5!

a5114ab1«1O~a2,«2,a«!,

n̄5122ab2«/21O~a2,«2,a«!.

Substituting these expressions into Eqs.~7! and solving the
characteristic equation we find the eigenvalues to be
l152«/21O(a2,«2,a«), l25211O(a2,«2,a«). Di-
recting axes along the corresponding eigenvectors one gets
change of variablesq5u12u2 , v5u11u2 . With these new
variables the set~7! takes the form:

v̇52v2v22~2ab1«/2!q214a2b
v31v22q2v1q2

v212v112q2

1Dv,
~8!

q̇52
«

2
q2qv14a2b

v2q2q32qv/2
v212v112q2

1Dq,

where unessential terms are omitted. The fast stable variab
v can be excluded from~8! by means of conventional
procedure.13 Solution of v̇50 gives

v52~«/212ab!q2.

In view of this, after some manipulation we obtain the
equation for the order parameter fieldq(x,t)

q̇5
q~q221!~«/22~«/212ab!q2!

~114~12b!a!22q2
1Dq, ~9!

which has the form of the time-dependent Ginzburg–Landa
equation. Stable stationary states of the undistributed mod
~4! correspond to the stable phases of the spatially distribute
one. In our case the rootsq1,2561 represent stable pure
phases,q350 corresponds to the mixed phase, stable fo
«.0 and unstable otherwise. Two rootsq4,5561/2A«/ab
represent saddle states merging at«50.

Multistable systems of this type~mostly bistable ones!
are well studied. It is known that in the general case phase
cannot coexist — interphase boundaries move along the m
dium. Thus propagation of the kink-type fronts switching the
6, No. 1, 1996
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82 Goryachev, Polezhaev, and Chernavskii: Extinction, turbulence, and unpredictability
medium from one state into the other is characteristic for
dynamic behavior of such a system. The convenient wa
decide on the relative stability of phases is provided by
potentialF(q) determined by

f ~q!52
dF~q!

dq
,

wheref (q) is the nonlinear function in Eq.~9!. The shape of
the potentialF(q) for Eq. ~9! is presented in Fig. 3. The
conditions for coexistence of phasesi and j

F~qi !5F~qj !, i , j51,2,3

~see, e.g., Ref. 14! determine the phase balance curves in
(a,b) parametric plane. They intersect in the triple po
where F(q1)5F(q2)5F(q3). The phase diagram for th
model under consideration is schematically shown in Fig
Coexistence curves terminate in the critical pointsA andB
where, as it is shown above, the system catastrophe man
has cusp singularities.

The only type of spatial inhomogeneities allowed a
structures formed by domains of different phases, which
2-D medium have a characteristic parquet-like mosaic
pearance. Though unstable in the frame of the determin
model ~6!, these structures can be rather long-livi
formations15 and should not be disregarded as biologica
insignificant.

FIG. 3. The shape of the potentialF(q) as a function of the parameter«.

FIG. 4. Phase diagram. Bifurcation map is shown in grey for referenc
CHAOS, Vol.
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IV. COMPETITION IN THE PRESENCE OF NOISE

One of the most prominent predictions of the determi
istic model is the presence of hysteresis phenomena for
rameters lying inside the multistable domains. Therefore
determine the stationary state of the system, one should fi
define the initial conditions. The direct consequence of hy
teresis is the phenomenon of metastability. Let us consid
one example. Although the mixed phase is absolutely sta
~for any finite perturbation! only in the region prescribed by
the phase diagram~see Fig. 4!, it preserves linear stability up
to theACB curve. Thus, inside theACBTdomain the mixed
phase remains metastable, and a nucleus of supercritical
is needed to initiate switching of the medium into one of th
pure states. This picture is true, of course, only if fluctuatio
are disregarded completely.

One way to take into account the fluctuations in birt
and death rates is to assume that the species densitiesn1 and
n2 at any time and point in the medium undergo uncorrelat
random pushes. For the order parameterq this gives

q~x,t !5q̃~x,t !1sj~x,t !, ~10!

wheres2!1 andj(x,t) is a random process with vanishing
correlation time and length. For simplicity this is often con
sidered to be a Poisson white noise:

j^~x,t !&50,

^j~x,t !j~x8,t8!&5s2d~ t2t8!d~x2x8!.

Substituting~10! into Eq. ~9! we obtain the Langevin
equation containing the stochastic force termL(q̃)j. Since
f (q) is a nonlinear function and thereforeL(q̃)[1, it is a
case of multiplicative internal noise. It was shown16 that in
such a case the influence of noise should be manifested
two different ways. First, even very low noise shifts the de
terministic bifurcation maps tending to reduce the hystere
loops. Second, being multiplicative the noise can change
form of the system potentialF(q) sometimes leading to new
bifurcations, which in the absence of noise would be impo
sible.

Further investigations of the model with the applie
noise were carried out numerically. The most convenient a
sensitive way to find noise-induced effects is to run down t
order parameter probability density distribution~PDD!
P(q,t). Let a continuous medium be considered as a set ofN
diffusively connected boxes, andn(q,Dq,t) be the number
of them whereq P (q,q1Dq) at the momentt, then

P~q,t !5 lim
N→`
Dq→0

n~q,Dq,t !

NDq
. ~11!

It should be noted that unlike the common definition o
probability density distribution,N boxes being diffusively
connected do not constitute an ensemble of statistically ind
pendent systems. For the completely deterministic ca
(s[0) there exist only three stationary asymptotically stab
distribution functions:Pi(q)5d(q2qi), i51,2,3; with any
other functionP(q,t) tending to one of them whent→`. As
it was stated earlier, inside the multistable domainsP(q) is ae.
6, No. 1, 1996
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83Goryachev, Polezhaev, and Chernavskii: Extinction, turbulence, and unpredictability
multifunction of parametersa and b and transitions
Pi(q)→Pj (q), i , j51,2,3, take place on the correspondi
domain boundaries.

The application of noise with the intensitys2.0 allows
the system to escape from shallow potential minima. The
fore the curves on the bifurcation map where the sys
jumps out of noise-destabilized states are no more coinci
with the ones on which corresponding potential minima d
appear altogether. The destabilizing effect of noise make
the multistable regions shrink as is shown in Fig. 5a. T
domainA8C8B8D8 geometrically similar to theACBD one
also inherits all the physical properties of the latter unde
completely deterministic description. With the increase
noise intensity verticesA8,C8,B8 move along the corre
sponding phase balance curves in such a way that at s
s25sc

2 they merge with the triple pointT8 and the
A8C8B8D8 domain disappears completely.

The influence of noise is not restricted to the phase
stabilization. As it can be predicted from its multiplicativ
nature, noise affects the very shape of the potential, shif
the positions of its minima and slightly changing the
depths. Therefore the positions of phase balance curves
of the triple point are also functions ofs2. Figure 6 repre-
sents numerical data showing the positions ofC8 and the

FIG. 5. Transformation of the bifurcation map in the presence of noise~a!
s2,sc

2 , ~b! s2.sc
2 . Hatched area is the region of overbarrier noise. Ot

designations are the same as in Fig. 1.
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triple T8 points versus noise intensitys2 for a15 a2

5 0.3, b15b250.6,a5b.
The most interesting noise-dependent phenomena, ho

ever, take place in those parametric regions where the sys
potentialF(q) has multiple minima but noise overrides al
the barriers separating them~hatched area in Fig. 5!. Such
regions will be referred to as areas of overbarrier noise.
their interior hysteresis breaks down, and instead of a set
stationaryP(q) functions @which are noise-broadened and
noise-shifted analogs ofPi(q)5d(q2qi), i51,2,3] we ob-
tain a unique but multimodal order parameter probabili
density distribution. In this case the shape ofP(q) provides
exhaustive information about the positions and relativ
depths of theF(q) minima. With the increase ofs2 these
regions grow, and ats25sc

2 they conjugate in the triple
point T8 forming one simply connected domain, which
grows further ats2.sc

2 ~see Fig. 5b!.
In the spatio-temporal behavior of the system, the mu

timodality ofP(q) manifests itself in the broken spatial sym
metry. Being diffusively connected, points of continuous m
dium are bound to act coherently. Therefore the mediu
splits into patches of different phases as is demonstrated
Fig. 7. The better the different peaks ofP(q) are resolved,
the more noticeable the spatial inhomogeneity. On t
boundaries separating the domain of overbarrier noise fro

er

FIG. 6. Numerical simulation data for theC8 andT8 points positions versus
noise intensity;a15a250.3,b15b250.6,r50,a5b.

FIG. 7. An example of noise-induced domain structure.
, No. 1, 1996
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84 Goryachev, Polezhaev, and Chernavskii: Extinction, turbulence, and unpredictability
those where at least one phase remains stable to nois
system can demonstrate purely noise-induced transi
from homogeneous to spatially inhomogeneous multiph
state. It should be noted that unlike the completely determ
istic case, the spatial structure is not merely a transient
to spatial homogeneity. Noise initiating formation of spa
structures also stabilizes them in the sense thatP(q) pre-
serves its multimodality with time. The actual species de
ties n1(x,t),n2(x,t), of course, continuously change, bei
in endless turbulent motion. Domains mainly populated
one of the species emerge, grow, and then split into sm
ones or ‘‘melt’’ back into the mixed phase to make room
growing domains of the concurrent species. To be more
cific let us fix an arbitrary pointx0 and record species de
sities n1(x0 ,i t), n2(x0 ,i t), i51,N̄, at equal time inter
vals t . Constructed in such a way the point trajectory w
elucidate the overall dynamics of the system, provided
N@1. An example of chaotic trajectory typical of the turb
lent medium dynamics in the vicinity of the triple point
s2.4sc

2 is presented in Fig. 8. The trajectory was samp
during 3•105 elementary time steps and then smoothed o
fast small-amplitude oscillations. Note that the traject
walks freely through the boundaries of the attraction ba
spending roughly the same time in the vicinity of each s
tionary state.

V. OCCUPATION OF AN INITIALLY UNPOPULATED
HABITAT

Although all the phenomena mentioned so far are typ
of the model~6!, they do not cover the whole range of po
sible dynamical regimes. In the majority of examples it w
implied for simplicity that the corresponding coefficients
competitors are to a large extent symmetrical. However,
natural ecosystem the situation may be different, when e
species dominates in some features, but falls behind in
others. Strengths and weaknesses compensate each
thus, maintaining a stable balance of species. In such a
ation one may expect significant complication of the sys
behavior. The contradiction of the effects of different para
eters on the overall fitness of species also enhances the

FIG. 8. Chaotical point trajectory typical of the turbulent dynam
s50.07. Crosses show the positions of noise-shifted ‘‘pure’’ states.
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of chance. Numerical experiments show that in some speci
cases it may result in the absolute unpredictability of dynam
ics.

Let us consider the following scenario. A large, initially
unpopulated continuous habitat~e.g. ploughed or burnt out
land! is randomly sown by two competing species. One o
them, say, the first, breeds faster (r.0), but suffers from
overcrowding more than the other (a.b). It is assumed that
initial spatial distributions of species are well approximated
by a Gaussian white noise with vanishing intensitys in

2 !1.
Parametersa,b are chosen from inside the bistable domain
so one of the species is doomed to become extinct. The pro
lem is which species will win? Numerical simulations have
revealed the phenomenon of kinetic overshot, when th
faster breeding first species wins although the paramete
according to the phase diagram lie deep in the region whe
the second species is asymptotically stable. Due to this effe
the parametric space domain where the first species dom
nates may enlarge significantly. But what is even more inter
esting is that the very result of competition becomes a ran
dom variable. Different realizations of noisy initial
conditions with the sames in

2 lead to different results. Pro-
vided the faster breeding first species outnumbers the seco
one everywhere in the habitat during the growth process,
wins. But if the second one is able to form at least one
finger-like nucleus which breaks through, it will occupy the
whole habitat. To characterize the uncertainty of the result o
competition the following measure can be proposed. Letpi
be the probability that thei th species wins, then

U5
min~p1 ,p2!

max~p1 ,p2!

takes its maximum value 1, if both results are equally prob
able:p15p251/2, and its minimum value — 0, if the result
is fully predictable. Distributions ofU versus the parameter
a for the caseb50.5, r50.1, s in

2 51026 are given in Fig. 9
with each point being calculated from 100 trials. The left
curve corresponds to the completely deterministic model dy
namics. Analogous results have been reported earlier17 for
the classical model as well. The right curve presents the da
with white noise applied~in the same way as it is described

s, FIG. 9. Uncertainty of the species competition result,s in
2 51026. Left curve

— s250, right curve —s25s in
2 .
6, No. 1, 1996
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85Goryachev, Polezhaev, and Chernavskii: Extinction, turbulence, and unpredictability
in Sec. IV!. Thoughs25s in
2 51026, the differences are no-

ticeable. It may seem surprising, but noise ‘‘helps’’ the fast
breeding species. To account for this effect one should ta
into consideration the dependence of the individual fertilit
on the population density at lowni . Leaving only linear and
quadratic terms in Eqs.~6! we obtain:

ṅ15~12b11r!n11~b1 /a12a!n1
22n1n21D1Dn1 ,

ṅ25~12b22r!n21~b2 /a22b!n2
22n1n21D2Dn2 .

~12!
Thus, for sufficiently lowni andb1 /a1.a,b2 /a2.b qua-
dratic terms in the set~12! are positive. This makes growing
species extremely sensitive to positive sign fluctuations, w
larger effect for outnumbering species because of the qu
dratic character of the phenomenon.

These results demonstrate that for some parametric
gions there exists a domain of initial conditions with nonzer
measure in the space of functions bounded in a segment
which the model behavior becomes unpredictable and sen
tive to even tiny fluctuations.

VI. CONCLUDING REMARKS

To highlight contributions of the modification made in
Sec. II to the system dynamics, model~4!,~6! is worth com-
paring to the classical one. First of all, it should be noted th
the model~1! is structurally unstable. Indeed, at paramete
a5 1 1 r/12r , b5 12r/11r linear nullclines of the clas-
sical model merge resulting in a continuum of stationa
points. Any vector function added to the rhs of~1! and per-
turbing the linear shape of nullclines, no matter how sma
the modulo of this perturbation, will inevitably lead to the
complete disappearance of such bifurcation. Thus, any ar
trary small perturbation not preserving linearity of nullcline
changes qualitative behavior of the model drastically. As th
classical model is contained in the model~4!,~6! as a limiting
case ata i ,b i→0, no additional effort is needed for its analy
sis. Combining the pointsA,B,C,D in one pointC* in Fig.
1, so that the domains 5, 6, 7 disappear completely, one c
get the partitioning of the (a,b) plane for the model~1!.
Thus, in the frame of the classical model the mixed and a
of the pure states are not stable simultaneously under a
parameters. The pointC* in the (a,b) plane in which all the
domains 1, 2, 3, 4 meet is just the one where the model h
merging nullclines. In the spatially distributed analog of th
model ~1! this point becomes a critical one. Qualitatively i
can be seen from Fig. 3 where the pointsA,B,C,D andT
should be combined again into one point. The same res
can be obtained formally from Eq.~9! by taking the limit
a i ,b i→0. The reaction term vanishes proportionally to«
and the system can exist only in a spatially homogeneo
state. This prohibits the spontaneous emergence of spa
patterns ~even noise-induced! in the frame of classical
model.17 From the above discussion the most interesting ph
nomena evidently take place where inter- and intraspeci
competitions are nearly of the same strength (a,b.1). In the
classical model this parameter domain is completely mask
CHAOS, Vol. 6
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by strange phenomena originating from the nullclines linea
ity. The two models can be compared in the following evo
lutionary aspect. Let us imagine that species coevolve fro
stable coexistence through strengthening of competition
the exclusion of one of them. According to the classica
model the density of that species decreases steadily up
complete extinction. This process occurs as slowly as param
eters evolve. However, in the frame of the modified mode
extinction catastrophes are possible when the entire ecosy
tem has no time for relaxation. Such an abrupt extinction ha
been reported as a starting event for the whole avalanches
extinction-speciation phenomena,18 which can be considered
as manifestations of self-organized criticality.19

In conclusion we wish to stress the organizing role o
noise in the system dynamics, as it not only induces th
formation of spatial patterns, but also switches on endles
turbulent-like rearrangement of the system. Therefore th
turbulent condition can be considered as a new, purely nois
induced, stationary state.
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APPENDIX: THE NONEXISTENCE OF LIMIT CYCLES
IN COMPETITION MODELS

Theorem 1.Consider a set of equations:

ẋ5 f ~x,y!, ẏ5g~x,y!; ~x,y!PG; f ,gPC1~G!,
~A1!

where G is a domain in R2. Let

f y8gx8.0 ~A2!

everywhere in G.
Then the set (A1) has no limit cycles in G.
Proof. Assume the set~A1! has a limit cycleV,G.
Then there should be a pointA[(x(A),y(A)) P V, such

that for ;(x,y)PV x<x(A); and also a point
B[(x(B),y(B)) P V, such that for;(x,y)PV y<y(B).

The timet can be considered as a value parametrizing
trajectory in the phase plane (x,y). Thus in the pointA

ẋ~A![ f ~A!50, ẍ~A!<0 ~A3!

and

ẏ~A![g~A!,0 for clockwise motion along the cycle,
~A4!

ẏ~A![g~A!.0 for counter-clockwise motion.

Similarly in the pointB

ẏ~B![g~B!50, ÿ~B!<0 ~A5!

and
, No. 1, 1996
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ẋ~B![ f ~B!.0 for clockwise motion,
~A6!

ẋ~B![ f ~B!,0 for counter-clockwise motion;

ẍ5 ḟ5 f x8ẋ1 f y8ẏ5 f f x81g fy8 ;

ÿ5ġ5gx8ẋ1gy8ẏ5 f gx81ggy8 .

From ~A3! and ~A5! we obtain correspondingly

ẍ~A!5g~A! f y8
~A!<0 ~A7!

and

ÿ~B!5 f ~B!gx8
~B!<0. ~A8!

For both possible types of motion along the cycle~A4! and
~A6! give

g~A! f ~B!,0. ~A9!

Finally, comparing inequalities~A7!–~A9! we obtain

f y8
~A!gx8

~B!5
ẍ~A!ÿ~B!

g~A! f ~B! <0, ~A10!

which is a contradiction to the condition~A2!. Thus the as-
sumption of the existence of a limit cycle is not true.
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