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Introduction 
Atlantic Salmon (Salmo salar) rely on long-chain omega-3 fatty acids such as Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA), for their health and development (Sundell et al., 2022). These fatty acids are crucial components of the cell membrane contributing to the maintenance of its structure and function by forming the lipid bilayer (Zhang et al., 2023). Additionally, poly-unsaturated fatty acids (PUFAs) like EPA and DHA also have key roles in the immune function (Zhang et al., 2023) and act as precursors for both pro-inflammatory and anti-inflammatory eicosanoids (Caballero-Solares et al., 2024). The balance of eicosanoids is essential for a healthy inflammatory response, a critical aspect of the immune system’s defence against pathogens.
Salmon are a key dietary source of omega-3 for humans. However, over the years, the levels of EPA and DHA have decreased in farmed salmon due to the increased use of terrestrial fatty acids, such as vegetable and seed oils, these terrestrial oils have replaced the fish / marine oils that were traditionally used in fish feed  (Sprague et al., 2016). This change in feed composition is driven by the aquaculture industry’s reliance on more sustainable and cost-effective plant-based oils. 
In an effort to address this nutritional shift, transgenic oilseed crops like Camelina sativa, which are engineered to produce high levels of EPA, have been developed as alternative feed sources. Oils from these genetically modified crops, supplied by Prof Jonathan Napier from the Rothamsted Institute, provide a unique opportunity to assess the effects of plant-based omega-3 sources on salmon health. 
My East Bio placement worked along side a funded BBSRC project “Novel Omega-3 Sources in Feeds and Impacts on Salmon Health” (BBSRC grant BB/S005919/1), my work compares the expression of immune-related genes in salmon fed with oils derived from transgenic Camelina sativa against those fed with traditional fish oil and sunflower oil as controls (Broughton et al., 2022).
The specific immune genes investigated in this study include pro-inflammatory markers such as IL1β and  IL8 B that are proinflammatory cytokines and ALOX5AP, ALOX5, COX2 that encode genes involved in ecisonoid production  (Buchmann et al., 2022; Katikaneni et al., 2020). Additionally, the gene encoding the cytokine  IL11  was examined due to its debated role in inflammation, with current literature suggesting it may have both pro-inflammatory and regulatory functions (Buchmann et al., 2022). By understanding how different omega-3 sources modulate immune gene expression in response to stimulant, this research aims to provide insights into optimizing salmon feed formulations to enhance health and disease resistance.


Methods 
	Diets and Feeding Trial 
Diets which were isonitrogenous and isoenergetic but constituted different omega-3/omega-6 polyunsaturated fatty acid (PUFA) ratios were produced at BioMar Tech-Centre (Brande, Denmark, Table 1). A total of 180 Atlantic salmon parr of weight ~30g from Buckieburn were divided into 3 tanks and fed on these experimental diets from September to December 2021 until weighing approximately 75g. 	Comment by Ritchie, Marlene: Only include the 3 diets we used in the table, keeps things simpler!

Table 1: Diet with source of oil, the % EPA and DHA, the total omega-3 PUFA % and omega-6 PUFA % and the omega-3:omega-6 ratio
	Diet
	Oil source
	EPA (%)
	DHA (%)
	Total n-3 
PUFA (%)
	Total n-6
PUFA (%)
	n:3/n:6

	C
	ECO GM Camelina
	9.36
	0.66
	16.4
	36.8
	0.45

	G
	Southern fish oil
	18.8
	10.4
	37.2
	3.44
	10.8

	H
	Sunflower oil
	0
	0
	0.09
	61.3
	0
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Figure 1: Experimental design outline. Fish were fed experimental diet (ECO GM Camelina) or control diet (Southern Fish Oil or Sunflower oil. 6 fish per diet were selected and stimulated with either PBS (a control) or Y. rukeri flagellin (Bacterial stimulent). Samples of head kidney tissue were taken and RNA was extracted, cDNA was synthesised from the RNA and qPCR assay was performed.	Comment by Martin, Prof. Samuel A. M.: I reformatted at put figure “top and bottom” it is the normal way to present figures. 

In vivo stimulation
Fish fed experimental diets for four months were selected and stimulated with a bacterial mimic. After the fish were lightly anaesthetised with MS-222 (PHARMAQ, Norway), six fish from each diet group were intraperitoneally injected with 0.1mL of Phosphate Buffer saline (PBS). Another six for each diet were injected with 0.1 mL of Yersinia ruckeri recombinant flagellin protein (FLAG) prepared in 0.02 M PBS to a working solution of 75 ngµl-1. The fish were returned to their respective tanks to allow for recovery post-injection. 24 hours post-recovery, fish were euthanised and weights and lengths were recorded. Head kidney tissue for each fish was sampled and stored in RNAlaterTM (Ambion Inc., USA) according to the manufacturer’s protocol. 

	Comment by Ritchie, Marlene: Could add a diagram of the experimental design if you wanted to.
RNA extraction and cDNA synthesis 
From each head kidney sample, approximately 50 mg was taken for RNA extraction using standard TRIzol reagent (Ambion by Life Technologies, Carlsbad, CA, United States) extraction protocol as described (Król et al., 2020). Spectrophotometry (NanoDrop Technologies, Santa Clara, CA, United States) and electrophoresis (Agilent Technologies, Santa Clara, CA, United States) were used to determine RNA quantity and integrity respectively. 

The Quantitect cDNA Synthesis kit (Qiagen) was used for the synthesis of cDNA from 1000 ng of total RNA in a volume of 12l with water. 2l of gDNA wipeout was added and this was incubated at 42C for 2 min to remove any genomic DNA contamination. A mastermix created from 4l buffer, 1 l RT primer mix and 1 l Quantiscript Reverse Transcriptase per sample was added to the treated RNA and incubated at 42C for 25 min followed by a final 95C incubation for 5 min. Each sample was diluted to a final concentration of 5 ng l-1. 
cDNA was tested by standard PCR with a mastermix consisting of 15.5l water, 0.5l Mytaq enzyme (Qiagen), 1l forward primer (Elongation Facter 1, 10 M), 1l reverse primer (Elongation factor 1, 10 M) and 5l of buffer per sample. 23l of the mastermix was added to 2l of cDNA (total of 10ng cDNA) to give a total of 25l. PCR cycling conditions were 2min at 95C to denature the cDNA, followed by 30 cycles of 95C for 15 sec, 55C for 15sec and 72 for 30sec for annealing. The PCR finished with an extension of 72 for 3min and was held a 4C. To visualise the results of PCR amplification, 8l of the PCR product was loaded on a 1.8% agarose gel stained with Midori green.

Gene expression of immune genes by qPCR
Real time PCR was used to assay the mRNA expression of 6 different genes (IL1β2, ALOX5ap1, ALOX5a1, COX2a2, IL8 and IL11a1) for which sequence analysis confirmed the specification of primers. A mastermix of 1l water, 7.5l 2 × GoTaq® SYBR-green qPCR master mix (Promega), 0.75l forward primer and 0.75l reverse primer per sample for each gene run was made up and 10l was aliquoted into each well. 5l of cDNA at 5ng l-1 was added to the well. The PCR cycling consisted of  95C for 3min then 40 cycles of 20s at 95C and 20sec at 64C with a final cycle of 1min at 95C, 30sec at 55C and 30sec at 95C to produce a melting curve. 	Comment by Ritchie, Marlene: At what concentration?	Comment by Ritchie, Marlene: Check this bit
Arbitrary expression values were calculated using Bio-Rad CFX Manager Software (version 3.0) and expression levels were normalised against the reference gene elongation factor 1 (Elf-1). 

	Statistical Analysis
To determine any significant changes in mRNA expression for each gene in response to stimulation and / or diet, a 2-way ANOVA was carried out with stimulant and diet as factors. Diagnostic plots of the residuals allowed for testing of the models in R and post-hoc testing, Tukey’s multiple comparison test, was carried out when significance was recorded. p values < 0.05 were considered to be significant. 

Results 
IL1β
Interleukin-1β2 (IL1β2) mRNA expression measured by qPCR was significantly in creased in expression  in thefish stimulated with a bacterial mimic than in control fish (p = 0.028), but no significant effect of diet was identified.
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Figure 2a. Mean relative abundance of the expression of mRNA of the IL1B gene for each diet (C, G or H) and stimulant (PBS and FLAG) with Standard error of the mean bars included Figure 2b. Mean fold change of mRNA expression of the IL1B gene against the PBS control for each diet (C, G and H) with Standard error of the mean bars included.	Comment by Ritchie, Marlene: I would suggest putting and a and b in the graph spaces and say Figure 2a and 2b rather than making them two separate figures. Also try to remove the outline on the graphs, will look a little nicer, I can show you how if you’re not sure.
[bookmark: OLE_LINK2]Table 2: Each factor of the 2-way ANOVA test with degrees of freedom and the F- and P-values for Mean Relative Abundance (MRA) and Mean Fold Change (MFC) for the IL1B gene
	
	MRA F-value
	MRA P-value
	MFC F-value
	MFC P-value

	Diet
	2.715
	0.0824
	1.624
	0.214

	Stimulent
	0.153
	0.6982
	6.332
	0.028

	Diet:Stimulent
	0.023
	0.9774
	1.624
	0.214




	ALOX5ap1
Arachidonate 5-Lipoxygenase Activating Protein (ALOXap1) mRNA expression measured by qPCR was significantly higher in relative abundance and fold change of fish stimulated with a bacterial mimic than in control fish (p = 0.0282 and 0.0352), but no significant effect of diet was identified.
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 Figure 3a: Mean relative abundance of the expression of mRNA of the ALOX5ap1 gene for each diet (C, G or H) and stimulant (PBS and FLAG) with Standard error of the mean bars included; Figure 3b: Mean fold change of mRNA expression of the ALOX5ap1 gene against the PBS control for each diet (C, G and H) with Standard error of the mean bars included.
 
Table 3: Each factor of the 2-way ANOVA test with degrees of freedom and the F- and P-values for Mean Relative Abundance (MRA) and Mean Fold Change (MFC) for the ALOX5ap1 gene


	
	MRA F-value
	MRA P-value
	MFC F-value
	MFC P-value

	Diet
	0.186
	0.8313
	1.160
	0.3272

	Stimulent
	5.315
	0.0282
	4.865
	0.0352

	Diet:Stimulent
	0.904
	0.4155
	1.160
	0.3272




	ALOX5a1
Arachidonate 5-Lipoxygenase (ALOX5a1) mRNA expression measured by qPCR was significantly higher in relative abundance in fish stimulated with a bacterial mimic than in control fish (p = 0.0237), but no significant effect of diet was identified.
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Figure 4a: Mean relative abundance of the expression of mRNA of the ALOX5a1 gene for each diet (C, G or H) and stimulant (PBS and FLAG) with Standard error of the mean bars included; Figure 4b: Mean fold change of mRNA expression of the ALOX5a1 gene against the PBS control for each diet (C, G and H) with Standard error of the mean bars included.

[bookmark: OLE_LINK3]Table 4: Each factor of the 2-way ANOVA test with degrees of freedom and the F- and P-values for Mean Relative Abundance (MRA) and Mean Fold Change (MFC) for the ALOX5a1 gene
	
	MRA F-value
	MRA P-value
	MFC F-value
	MFC P-value

	Diet
	0.968
	0.3916
	1.900
	0.167

	Stimulent
	5.681
	0.0237
	2.098
	0.158

	Diet:Stimulent
	2.976
	0.0662
	1.900
	0.167



COX2a2
Cytochrome c oxidase polypeptide II (COX2a2) mRNA expression measured by qPCR was significantly higher in relative abundance of fish stimulated with a bacterial mimic than in control fish (p < 0.001). A significant effect was detected on fold change of mRNA expression measured by qPCR when diet H was compared to diet C (p = 0.008) and G (0.007).
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Figure 5a: Mean relative abundance of the expression of mRNA of the COX2a2 gene for each diet (C,G or H) and stimulant (PBS and FLAG) with Standard error of the mean bars included; Figure 5b: Bar graph for the mean fold change of mRNA expression of the COX2a2 gene against the PBS control for each diet (C, G and H) with Standard error of the mean bars included.

[bookmark: OLE_LINK4]Table 5: Each factor of the 2-way ANOVA test with degrees of freedom and the F- and P-values for Mean Relative Abundance (MRA) and Mean Fold Change (MFC) for the COX2a2  gene.	Comment by Ritchie, Marlene: If p-values are very small, we usually just report as p < 0.001
	
	MRA F-value
	MRA P-value
	MFC F-value
	MFC P-value

	Diet
	1.380
	0.267203
	7.119
	p < 0.001 

	Stimulent
	19.941
	P < 0.001 
	18.723
	p < 0.001 

	Diet:Stimulent
	2.294
	0.118284
	7.119
	P < 0.001 



Table 6: Results of the Post-Hoc Tukey comparison test and the significant comparisons with their relevant P-values for both Mean Relative Abundance (MRA) and Mean Fold Change (MFC) for the COX2a2 gene.
	COMPARISON
	MRA P-Value 
	MFC P-Value

	H-C
	N/A
	0.0078228

	H-G
	N/A
	0.0070835

	H:FLAG-C:FLAG
	0.0395221
	[bookmark: OLE_LINK5]p < 0.001 

	H:FLAG-G:FLAG
	N/A
	p < 0.001

	C:PBS-H:FLAG
	p < 0.001 
	p < 0.001

	G:PBS-H:FLAG
	p < 0.001 
	p < 0.001

	H:PBS-H:FLAG
	p < 0.001 
	p < 0.001




	IL8
Interleukin-8  (IL8) mRNA expression measured by qPCR was significantly higher in relative abundance and fold change of fish stimulated with a bacterial mimic than in control fish (p = 0.004 and 0.004), but no significant effect of diet was identified.
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 Figure 6a: Mean relative abundance of the expression of mRNA of the IL8 gene for each diet (C, G or H) and stimulant (PBS and FLAG) with Standard error of the mean bars included;  Figure 6b: Bar graph for the mean fold change of mRNA expression of the IL8 gene against the PBS control for each diet (C, G and H) with Standard error of the mean bars included.

Table 7: Each factor of the 2-way ANOVA test with degrees of freedom and the F- and P-values for Mean Relative Abundance (MRA) and Mean Fold Change (MFC) for the IL8  gene
	
	MRA F-value
	MRA P-value
	MFC F-value
	MFC P-value

	Diet
	1.357
	0.27270
	2.302
	0.11744

	Stimulent
	9.888
	0.00373
	9.640
	0.00413

	Diet:Stimulent
	2.368
	0.11091
	2.302
	0.11744



IL11a1
Interleukin 11a (IL11a1) mRNA expression measured by qPCR was significantly higher in relative abundance and fold change of fish stimulated with a bacterial mimic than in control fish (p < 0.001). A significant effect was detected on relative abundance and fold change of mRNA expression measured by qPCR when diet H was compared to diet C (p = 0.014) and G (p = 0.038), when bacterial mimic stimulated fish were compared to control fish (p < 0.001).
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 Figure 7a: Mean relative abundance of the expression of mRNA of the IL11a1 gene for each diet (C, G or H) and stimulant (PBS and FLAG) with Standard error of the mean bars included;  Figure 7b: Bar graph for the mean fold change of mRNA expression of the IL11a1 gene against the PBS control for each diet (C, G and H) with Standard error of the mean bars included.

Table 8: Each factor of the 2-way ANOVA test with degrees of freedom and the F- and P-values for Mean Relative Abundance (MRA) and Mean Fold Change (MFC) for the IL11a1 gene
	
	MRA F-value
	MRA P-value
	MFC F-value
	MFC P-value

	Diet
	5.342
	0.01059
	13.46
	p < 0.001 

	Stimulent
	48.006
	p < 0.001 
	35.11
	p < 0.001 

	Diet:Stimulent
	6.126
	0.00604
	13.26
	p < 0.001 



Table 9: Results of the Post-Hoc Tukey comparison test and the significant comparisons with their relevant P-values for both Mean Relative Abundance (MRA) and Mean Fold Change (MFC) for the IL11a1 gene
	Comparison
	MRA P-value
	MFC P-value

	H-C
	0.0143812
	p < 0.001

	H-G
	0.0389670
	0.0041421

	H:FLAG-C:FLAG
	0.0011946
	p < 0.001 

	H:FLAG-G:FLAG
	0.0287306
	p < 0.001 

	G:PBS-G:FLAG
	0.0373224
	N/A

	H:PBS-G:FLAG
	0.0359500
	N/A

	C:PBS-H:FLAG
	p < 0.001 
	p < 0.001 

	G:PBS-H:FLAG
	p < 0.001 
	p < 0.001 

	H:PBS-H:FLAG
	p < 0.001 
	p < 0.001 




Discussion 
During this EastBio placement I examined the expression of several pro-inflammatory genes in Atlantic salmon (Salmo salar) fed different diets and exposed to either a bacterial mimic (FLAG) or a phosphate buffer solution to stimulate an immune response. The genes studied included IL1β, IL8, ALOX5ap1, ALOX5a1, COX2a2, and IL11a1. Our findings showed that stimulation with the bacterial mimic caused a significant increase in the expression of all six genes, this indicates an active immune response. The expression of the pro-inflammatory genes IL1β, ALOX5ap1, ALOX5a1and IL8 did not show a significant difference in response to diet. This suggests that, under the conditions studied, the omega-3 sources in the ECO camelina feed did not modulate the expression of these genes. However, the expression of the COX2a2 and IL11a1 genes did show a significant difference in response to a change in diet. 

The mRNA expression of bacterial mimic (FLAG) stimulated fish showed a significant increase (P < 0.05) in comparison to the control (PBS) across all genes studied. This indicates a strong inflammatory response in all fish studied. Each gene, IL1, ALOX5ap1, ALOX5a1, COX2a2 and IL8, have important roles in mediating inflammation and so, these results are consistent with our expectations. IL1, ALOX5ap1, and ALOX5a1 are each involved in the early inflammation response and leukotriene synthesis (Buchmann et al., 2022; Katikaneni et al., 2020).
In summary we are able to show that manipulating the diet by feeding the fish with higher levels of DHA can alter how the fish respond to bacterial stimulants.  This information will help design future diets that may improve fish health.
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