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1 Introduction

The objective of the course was to deal with the theory behind the use of

Markov Chain Monte Carlo Methods, specifically the Gibbs Sampler and also

implementing these concepts on the study of the inheritance of Quantitative

traits. This rapidly developing field in the area of applied statistics have

much scope for the study of complex genetic models.

The objective of the course was fully fulfilled and it provided me with a

very good introduction to the subject. Specifically, it allowed to have access

to the basic background in order to understand many of the complexities

of this method of estimation, when applied to very complex models of QTL

detection.
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2 Course Contents

The course was divided in various sub-topics that enable the attendants to

understand the increase complexity of the subject. A summary of the course

is given below

PART I - Fundamentals
iRandom variables and probability distributions.
2. Functions of random variables.
3.An introduction to likelihood inference.
4.An introduction to Bayesian inference.
5.The EM algorithm.
CAn overview of Markov chain theory.
7.Markov chain Monte Carlo methods.
7.1. The Metropolis - Hastings algorithm.
7.2. The Gibbs sampler.
7.3. Reversible jump Markov chain Monte Carlo.
8.Model choice.

PART II - Applications of MCMC methods in Genetics 1 The single trait
additive genetic model.
2.The mixed linear model with maternal effects.
:3.Data augmentation.
4.Multiple trait Gaussian models.
5.Analvsis of categorically distributed traits.
6. Joint analysis of Gaussian a.nd categorical traits.
7.Segregation analysis models.
8.An introduction to QTL models.
9.General implementation issues and output analysis.

Initially, the course started with an outline of probability calculus, in

which discrete and continuous variables were characterized in terms of their

sampling distribution. This information was vital to introduce the study of
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Markov Chains and both Bayesian and Frequentist. statistical approaches.

In the Univariate case, binomial gama, beta, uniform and normal distribution

were pursued, as well as for the Multivaria.te case the norma.l and truncated

normal distributions which proved to be of much use when implementing

infinitesimal and thresholds models during the course.

3 Likelihood inference

In this section likelihood inference will be sketched using as an example the

estimation of the average of a variable y. For simplicity, we assume using as

a data one single data point, for simplicity. If we consider a single data point

(y=1O) draw from a certain probability distribution (eg Normal) assuming

that the variance is known (u=25). The objective here is to draw inferences

about the mean of the variable. The likelihood function can be expressed as:

= 25,y = 10) = (50l/2cxP[—$01 (1)

If we plot the likelihood, varying the value of the unknown tt then it is

possible to obtain the maximum likelihood of ji given the data. In this

case the Maximum likelihood estimate is of course, equal to 10 (see figure 1).
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Plot of the likelihood function
(eq. 1) for various values of 2.

The course also comprised the application of likelihood based techniques

to gain understanding about different genetic models of use in genetics. For

example. the additive genetic model was thoroughly outlined.This was espe

cially appealing for me since the use of likelihood based techniques is much

use in detecting genes using information form marker data. For example

Profile likelihoods are used to map genes assuming different genetics models,

and a profile likelihood similar to the one presented in the figure 1 is used to

make inferences about the most likely position of the gene in the chromosome.
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4 Bayesian Inference

Under Bayesian estimation, inferences about the parameters are drawn from

probability distributions. ie. it is implied that parameters are random van

a.bles rather than fixed values (as in likelihood inference). The inference is

carried out using prior information (information previously gathered by the

researcher) which is then updated using information obtained from actual

data available. The data is modeled as in the likelihood case in the form

of a sampling model. This process is done to obtain the marginal posterior

distribution of the variables (parameters) of interest.

The application of Bayesian statistics was hampered by the availability

of tractable forms to obtain analytically the posterior distributions of the

parameters of interest. Nowadays with the development of very fast com

puters it is possible to use a series of Monte-carlo simulation procedures to

approximate the distributions of interest. i.e. the distributions of the param

eters, which in some complex cases are intractable analytically. Basically

Monte Carlo methods relies on the fact that increasing the number of datum

generated using simulation, the greater the information and the closer the

Monte Carlo estimate is from the true value. Using the information from

the simulated data, it is possible to perform integration of very complex dis

tributions without the need to have tractable forms to perform integration

using analytical or numerical methods.

Using properties of Monte Carlo Markov Chains, ie a series of random

variables which satisfy the condition that moving from one state (s) to the
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next state (5+1) has probability associated which is the transition proba

bility. This transition probability enable to obtain equilibrium distributions

which satisfy the condition of “ ergodicity” and “reversibility”.

Different algorithms were cleverly developed using properties of such

Markov chains. The Gibbs sampler, a especial case of the Metropolis Hastings

Algorithm is derived using properties of the conditional posterior distribu

tion of the parameters of interest which are often known. The basic steps of

the Gibbs sampler can be summarized as follows

1.- Compute the joint posterior distribution of the parameters given the

data.

2.- Derive the conditional posterior distributions of all the parameters, in

turn. Inspect the known distribution of the parameters, which have all close

form.

3.- Simulate values of samples from distributions of close form.

4.- Update all the values of the parameters given the current values of the

other samples.

5.- Run until convergence.

Following, I will give a simple example in which two parameters of a

certain distribution are unknown. Here, the aim is to estimate the mean and

the variance of a normally distributed variable with mean (jt) and variance

(a2) unknown. The first step is to construct the “posterior distribution” of

the parameters given the data, which is equal to
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p(p,a2y) p2)p(jt)p(yI,a2) (2)

where p(t) is the prior distribution of the mean, p(a2) is the prior distri

bution of the mean and p(yp. a2) is the sampling model which is used to

update the prior information p(t) and p(a2).

Using knowledge of probability distribution theory it is possible to deduce

the which distribution follows the different parameters of interest. For the

present case ji and a2 followed a normal and a inverse chi square distribution,

respectively.

The next step is to use these distributions to generate samples using

simulation, which are needed to compute the mean and the variance of the

parameters. This statistics are analogous to the ML estimators of the mean

and the variance, and its corresponding information, However conceptually

are not comparable. Under Likelihood inference we produce ML estimators

which are use to make inferences about unknown fixed values, ie the pa

raujeters. Under Bayesian Inference we focus our interest on the probability

distribution of the parameters given the data. Parameters which are assumed

to he random variables.

I simulate data and produce a simple piece of fortran code that imple

ment the Gibbs sampler to obtain the probability distribution of the mean

and the variance using the information generated from simulated data. The

results are presented in the following table
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Table 1.- Summary statistics for M and a2 over
Monte-Carlo samples using the Gibbs sam
pler. CI. = Confidence Interval

Mode 8.84 21.63
Bayesian Mean 8.85 21.74
results Variance 0.07 3.55

C.I.(0.95) 8.4-9.3 18.8-25.1

Under Bayesian inference the posterior distribution can be obtained and

is presented for the mean and the variance in figure 2a and 2b respectively. It

may be neccesary to note that using maximum likelihood estimation would

give a single point estimator, which in this case is equal to 8.9 for the simu

lated data and for having a measure of uncertainty, we would have to resort

to asymptotic theory and derived the standard error of the mean (0.0721)

(table 1). The same holds for the variance of the data.

This general example was used to outline basic principles, but the power

of these methods is due to the analysis of very complex models of estimation

with many effects and by which Maximum Likelihood Theory may proved to

be very difficult to apply in practice.

Different models were studied in detail. In the first instance, models

assuming a very large number of loci affecting the tra.it were studied, in

which the univariate mixed linear model of only additive effects was followed

by maternal and multivariate normal models. Of special interest of joint

analysis of normal and categorical traits was studied in much detail. The

course coiuprise the use of Bayesian analysis of Quantitative trait loci models

allowing for the number of QTL be a random variable. This was solved using
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the reversible jump algorithm, which is the general case of the metropolis

hastings algorithm, in which the vector of parameters is allow to changen of

dimension. This is a very technical subject that was pursued in depth by the

course tutor.

Conclusion

The Course provide with an excellent background to understand and use

vlonte Carlo Markov Chains and Bayesian inference to help the study of

quantitative traits in human and animal species.
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Figure 2.- Probability distribution of the t

(a) and o’2(b) using the Gibbs sampler
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