Davis Expedition Fund

Fieldwork in Sri Lanka for the project

The biogeographic affinities of the Sri Lankan flora

Lakmini Darshika Kumarage

Royal Botanic Garden Edinburgh

Expedition/ Project Title:	The biogeographic affinities of the Sri Lankan flora	
Travel Dates:	28 th September 2013 to 13 th February 2014	
Location:	Sri Lanka	
Group Members: Aims:	Lakmini Kumarage Plant collection of Sri Lankan Begoniaceae, Sapotaceae, Zingiberaceae, Gesneriaceae for biogeographic study	

Project description

The island of Sri Lanka is located south-east of the southernmost tip of peninsular India, and has a total area of 65,610 km². The island consists of palaeozoic granitic rocks of the Deccan plate, of Gondwanan origin, which have been uplifted in the post-Miocene (Gunatilleke & Ashton 1987). Despite its small size, it has high floristic richness and species diversity, and one quarter of the angiosperm flora is endemic (Gunatilleke & Ashton 1987, Gunatilleke & Gunatilleke 1990).

The indigenous flora of Sri Lanka has about 3900 species of land plants and the endemic flora is heavily concentrated in the wet south-western quarter of the island (Gunatilleke & Ashton 1987). Among 2900 species of angiosperms, 830 are known to be endemic. Despite the fact that the flora of Sri Lanka has been extensively studied since the eighteenth century by various botanical experts, the biogeographic affinities of the flora remain poorly investigated (Gunatilleke & Ashton 1987). The flora can be devided in to six elements, i.e. Sri Lankan, Indo Sri Lankan, Himalayan, Malayan, African and Pantropical (Gunatilleke & Gunatilleke 1990)

The other four floristic elements in Sri Lanka, i.e. the Malayan, Himalayan, African and pantropical elements, might result from the immigration of Laurasian lineages through Asia and India after collisions of the Deccan plate with Laurasia during the late Cretaceous and early Tertiary, which resulted in the mixing of the Deccan Gondwanan flora with the tropical flora occupying southern Laurasia.

Diversification in pantropically distributed taxa may also be due to more recent longdistance dispersal and this hypothesis is supported by dated molecular phylogenies. Long distance dispersal has contributed to sharing of floristic elements between tropical Asia and Africa and it is considered as the reason for appearance of *Begonia afromigrata* in Indochina which was earlier reported in Africa (Wilde et al 2011). There are other striking examples such as the occurrence of *Gleditsia* in South America with its closest relatives living in China and long distance dispersal has been considered the reason for colonization of some lineages within pantropical families such as Annonaceae, Myristicacae and Boraginaceae to their current hotspots (Renner 2005). Most of the present day biota of Madagascar resulted from long distance dispersal since the majority of angiosperm families are not old enough to support the vicariance hypothesis and 60% of angiosperms are hypothesized to be transoceanic dispersers (Yoder et al 2006: Wilde et al 2011) Another potentially important contributor to the Sri Lankan flora will have been diversification of lineages within the island (*in situ* speciation) which resulted in the evolution of new species. Species that are endemic to Sri Lanka, and also have sister species in Sri Lanka, are likely to have arisen by *in situ* speciation, whereas endemics whose closest relatives occur elsewhere might be paleoendemics that once had wider distributions.

Based on the fossil record Morley indicated that a substantial number of Indian subcontinental elements invaded Southeast Asia during the Oligocene when the Laurasian part of Southeast Asia and the Indian subcontinent were at similar latitudes and had similar climates. The Indian subcontinent is therefore important in contributing to the biogeographic history of Southeast Asia.

Thus, Sri Lanka is a key location for understanding patterns of migration and biome formation among tropical plants. To investigate its biogeographic affinities, study groups should be pantropical in distribution, well-sampled and thoroughly investigated in other regions. Sapotaceae, Begoniaceae and Zingiberaceae and Gesneriaceae are ideal in this respect since all have dated phylogenies produced by previous studies (Bartish et al 2010; Thomas2011; Poulsen et al. unpublished).

Objectives of my project are,

- (1) To incorporate Sri Lankan taxa into worldwide phylogenies for four families: Sapotaceae, Begoniaceae, Zingiberaceae and Gesneriaceae.
- (2) To estimate the relative contributions to the Sri Lankan flora of Gondwanan relicts, immigration from nearby landmasses (Asia), long distance dispersal from Southeast Asia, and long distance dispersal from Africa.
- (3) To examine the contribution of in-situ speciation to biodiversity in Sri Lanka (bearing in mind the limitation of undersampling on the Indian mainland)
- (4) To investigate the contribution of Sri Lanka to the assembly of biotas elsewhere, by examining whether examples exist of:
 - (4a) clades of Asian taxa whose most basal members occur in Sri Lanka, indicating a group whose ancestors rafted northwards with the subcontinent and then radiated outwards into Asia.
 - (4b) long distance dispersal events out of Sri Lanka, as might be indicated for example by a clade of Southeast Asian species whose closest relative was Sri Lankan and whose next closest relatives were also Sri Lankan or occurred further west.

Field collections in Sri Lanka

Field collections were made at pre identified locations (list of locations is given below) defined based on the distribution of the species according to the flora of Ceylon and existing herbarium specimens in different herbaria. Transportation was made by a vehicle to the forests and inside the forests on foot. Field assistants were accompanied me on all the excursions. For the DNA extractions leaf samples of each of the species were collected in silica. To prepare herbarium specimens a branch from each species was removed from the plant using secateurs and wrapped in newspaper. Then alcohol was added to prevent degradation of the specimens. All the information on the site and plant were recorded and the locations were recorded using a GPS. Plant habit, reproductive structures and any other important features were photographed. When collecting branches from trees tree climbers or poles were used. All the local connections were made to get the collection permits and taken through proper channels to the Royal Botanic Gardens of Edinburgh, where I carry out my lab work. Silica dried specimens were used for DNA extractions and herbarium specimens were prepared and deposited at the Royal Botanic Gardens Edinburgh.

Schedule

26/10/2013-27/10/2013	Field work in Siripada Sanctuary, Central province					
30/10/2013	Maskeliya region, Nuwara Eliya					
18/01/2014-20/01/2018	Field work in Kanneliya Forest Reserve, Mulatiyana, Rathmale forests					
22/01/2014	Knuckles Forest Reserve, Riverston, Matale					
25/01/2014	Loolkandura mountainous area					
27/01/2014	Peradeniya, Gannoruwa forest					
01/02/2014	Collections in Ritigala Strict Nature Reserve, Polonnaruwa					
02/02/2014	Kikiliyamana Forest Reserve					

Results

All the collection localities, specimens collected are given in the Table No 01.

Final budget

	Sri Lankan Rupees	GBP	
Air tickets	115442	544.5	
Vehicle Rental	322240	1520	
Field Assistants	62000	292.45	
Accomodation	24000	113	
Food	18000	84.9	
Taxi		55	
Bus travel	2850	13.44	
International Banking		58	
	Total	2681.29	

Davis Expedition Fund $2700\pounds$ Remaining Funds $18.71\pounds$ Exchange Rate $1\pounds = 212$ LKR

Acknowledgements

I would like to thank the Davis Expedition Trust for the funds that made this fieldwork successful.

References

Ashton, P.S. & Gunatilleke, C.V.S. (1987) New light on the plant geography of Ceylon. I. Historical plant geography. *J. Biogeogr.* 14:249-286.

Bartish, I.V., Swenson, U., Munzinger, J., Anderberg, A.A. (2005) Phylogenetic Relationships among New Caledonian Sapotaceae (Ericales): Molecular Evidance for Generic Polyphyly and Repeated Dispersal. *American Journal of Botany*. 92(4):667-673.

Bartish, I.V., Antonelli, A., Richardson, J.E., Swenson, U. (2011) Vicariance or longdistance dispersal: historical biogeography of the pantropical subfamily Chrysophylloideae (Sapotaceae). *Journal of Biogeography*. 38:177-190.

Dassanayake, M.D., ed. (1981) A revised handbook to the flora of Ceylon. Vol 3:79-107.

Dassanayake, M.D., ed. (1983) A revised handbook to the flora of Ceylon. Vol 4:137-152.

Dassanayake, M.D., ed. (1995) A revised handbook to the flora of Ceylon. Vol 9:351-408.

Donoghue, M.J. & Moore, B.R. (2003) Toward an Integrative Historical Biogeography. Integr. *Comp. Biol.* 43:261-270.

Forrest, L.L., Hughes, M., Hollingsworth, P.M. (2005) A phylogeny of *Begonia* Using Nuclear Ribosomal Sequence Data and Morphological Characters. *Systematic Botany*. 30(3):671-682.

Gunatilleke, I.A.U.N. & Gunatilleke, C.V.S. (1990) Distribution of Floristic Richness and Its Conservation in Sri Lanka. *Conservation Biology*. 4(1):21-31.

Kress, W. J., L. M. Prince, and K. J. Williams. 2002. The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. *American Journal Botany* 89: 1682–1696.

Kress, W.J., Liu, A., Newman, M., Li, Q. (2005) The Molecular Phylogeny of *Alpinia* (Zingiberaceae): A Complex and Polyphyletic Genus of Gingers. *American Journal of Botany*. 92(1):167-178.

Moller, M., Pfossor, M., Jang, C., Mayer, V., Clark, A., Hollingsworth, M.L., Barfuss, M.H.J., Wang, Y., Kiehn, M., Weber.A. (2009) A preliminary phylogeny of the 'Didymocarpoid Gesneriaceae' based on three molecular data sets: Incongruence with available tribal classifications. *American Journal of Botany*. 96(5):989-1010.

Ngamriabsakul, C., Newman, M.F., Cronk, Q.C.B. (2004) The Phylogeny of Tribe Zingibereae (Zingiberaceae) based on ITS (nr DNA) and *trn*L-F (cpDNA) Sequences. *Edinburgh Journal of Botany*. 60(3):483-507.

Poulsen, A. D. et al. Unpublished. Patterns of dispersal across Wallace's Line: a case study in Zingiberaceae. (Research currently ongoing at the Royal Botanic Garden, Edinburgh).

Rajbhandry, S., Hughes, M., Phutthai, T., Thomas, D.C., Shrestha, K.K. (2011) Asian *Begonia* : out of Africa via the Himalayas? *Gardens' Bulletin Singapore*. 63:277-286.

Swenson, U., Bartish, I.V. & Munzinger, J. (2007a) Phylogeny, diagnostic characters, and generic limitation of Australasian Chrysophylloideae (Sapotaceae, Ericales): evidence from ITS sequence data and morphology. *Cladistics*. 23:201–228.

Swenson, U., Munzinger, J. & Bartish, I.V. (2007b) Molecular phylogeny of *Planchonella* (Sapotaceae) and eight new species from New Caledonia. *Taxon*. 56:329–354.

Swenson, U., Anderberg, A.A. (2005) Phylogeny, character evolution, and classification of Sapotaceae(Ericales). *Cladistics*. 21:101-130.

Swenson, U., Munzinger, J., Bartish, I.V. (2007) Molecular phylogeny of *Planchonella* (Sapotaceae) and eight new species from New Caledonia. *Taxon*. 56(2):329-354.

Thomas, D. 2010. *Dispersal across Wallaces' line? The systematics of Sulawesi* Begonia. Unpublished PhD thesis.

Thomas, D.C., Hughes, M., Phtthai, T., Ardi, W.H., Rajbhandary, S., Rubite, R., Twyford, A.D., Richardson, J.E. (2011) West to east dispersal and subsequent rapid diversification of the mega-diverse genus *Begonia* (Begoniaceae) in the Malesian archipelago. *Journal of Biogeography*, no. doi:10.1111/j.1365-2699.2011.02596.

Wang, Y., Liang, R., Wang, B., Li, J., Qiu, Z., Li, Z., W, A. (2010) Origin and phylogenetic relationships of the Old World Gesneriaceae with actinomorphic flowers inferred from ITS and *trnL-trnF* sequences. *Taxon.* 59(4):1044-1052.

				Collections made during the	expedition and	deposited at R	BGE			
Coll no	Date	Collectors	Family	Name	Province	Locality	Habitat	Latitude	Longitude	Altitude (m
LK70	26/10/13	Lakmini Kumarage	Zingiberaceae	Alpinia abundiflora	Sabaragamuwa	Siripada	in primary forest	6.4800	80.2900	2000
LK71	26/10/13	Lakmini Kumarage	Zingiberaceae	Alpinia abundiflora	Central	Siripada	in primary forest	6.4800	80.2900	2020
LK72	26/10/13	Lakmini Kumarage	Sapotaceae	Palaquium sp	Central	Siripada	in primary forest	6.4800	80.2900	2020
LK73	26/10/13	Lakmini Kumarage	Zingiberaceae	Alpinia abundiflora	Central	Siripada	in primary forest	6.4800	80.2900	2020
LK74	26/10/13	Lakmini Kumarage	Sapotaceae	Palaguium sp	Central	Siripada	in primary forest	6.4800	80.2900	2020
LK75	26/10/13	Lakmini Kumarage	Sapotaceae	Palaquium sp	Central	Siripada	in primary forest	6.4800	80.2900	2020
LK76	26/10/13	Lakmini Kumarage	Sapotaceae	Isonandra sp	Central	Siripada	in primary forest near stream	6.4800	80.2900	2020
_K77	26/10/13	Lakmini Kumarage	Sapotaceae	Madhuca clavata	Central	Siripada	in primary forest	6.4800	80.2900	2020
LK80	30/10/13	Lakmini Kumarage	Zingiberaceae	Zingiber cylindricum	Central	Saptha Kanya	in primary forest	6.5300	80.2900	1500
LK81	30/10/13	Lakmini Kumarage	Zingiberaceae	Alpinia abundiflora	Central	Saptha Kanya	in primary forest	6.5300	80.2900	1500
_K82	30/10/13	Lakmini Kumarage	Zingiberaceae	Amomum fulviceps	Central	Saptha Kanya	in primary forest	6.5300	80.2900	1500
_K84	30/10/13	Lakmini Kumarage	Zingiberaceae	Zingiber cylindricum	Central	Saptha Kanya	in primary forest	6.5300	80.2900	1500
LK85	30/10/13	Lakmini Kumarage	Zingiberaceae	Amomum sp	Central	Saptha Kanya	in primary forest	6.5300	80.2900	1500
LK86	30/10/13	Lakmini Kumarage	Zingiberaceae	Amomum echinocarpum	Central	Saptha Kanya	River bank	6.5300	80.2900	1500
LK88	18/01/14	Lakmini Kumarage	Zingiberaceae	Amomum echinocarpum	Southern	Mulatiyana	road side	7.5116	80.6495	230
LK89	18/01/14	Lakmini Kumarage	Zingiberaceae	Amomum acuminatum	Southern	Rathmale	in primary forest	7.5116	80.6495	230
_K90	18/01/14	Lakmini Kumarage	Gesneriaceae	Chirita zeylanica	Southern	Galle	Near strem in primary forest	7.5116	80.6495	230
LK91	18/01/14	Lakmini Kumarage	Gesneriaceae	Chirita zeylanica	Southern	Galle	Near strem in primary forest	7.5116	80.6495	230
_K92	22/01/14	Lakmini Kumarage	Gesneriaceae	Didymocarpus humboldtianus	Central	Riverston	Road side	7.14	80.64	500
_K93	22/01/14	Lakmini Kumarage	Sapotaceae	Palaquium sp	Central	Riverston	Road side	7.14	80.64	500
_K94	22/01/14	Lakmini Kumarage	Zingiberaceae	Alpinia fax	Central	Riverston	Road side	7.14	80.64	500
LK95	25/01/14	Lakmini Kumarage	Gesneriaceae	Dydimocarpus sp	Central	Loolkandura	in primary forest	7.1479	80.7007	1492
LK96	25/01/14	Lakmini Kumarage	Gesneriaceae	Chirita walkeri	Central	Loolkandura	in primary forest	7.1479	80.7007	1492
_K97	25/01/14	Lakmini Kumarage	Sapotaceae	Isonandra sp	Central	Loolkandura	Road side	7.1479	80.7007	1492
_K98	27/01/14	Lakmini Kumarage	Sapotaceae	Mimusops elengi	Central	Peradeniya	in secondary forest			
_K99	01/02/14	Lakmini Kumarage	Sapotaceae	Madhuca clavata	North Central	Ritigala	in primary forest	[
_K100	02/02/14	Lakmini Kumarage	Gesneriaceae	Aeschinanthus zeylanica	Central	Kikiliyamana	in primary forest			
K101	30/10/13	Lakmini Kumarage	Gesneriaceae	Didymocarpus zeylanicus	Central	Saptha Kanya	in primary forest	6.5300	80.2900	1500
K102	02/02/14	Lakmini Kumarage	Gesneriaceae	Chirita mooni	Central	Kikiliyamana	in primary forest			1